Page 66 - GTM-1-1
P. 66

Global Translational Medicine                                             Fusion events identified in tumor



            74.  Wu G, Diaz AK, Paugh BS, et al., 2014, The genomic landscape   85.  Matjasic A, Zupan A, Bostjancic E, et al., 2002, A novel PTPRZ1–
               of diffuse intrinsic pontine glioma and pediatric non-  ETV1 fusion in gliomas. Brain Pathol, 30(2): 226–234.
               brainstem high-grade glioma. Nat Genet, 46(5): 444–450.
                                                                  https://doi.org/10.1111/bpa.12776
               https://doi.org/10.1038/ng.2938
                                                               86.  Mak HH, Peschard P, Lin T, et al., 2007, Oncogenic activation
            75.  Solomon JP, Benayed R, Hechtman JF, et al., 2019, Identifying   of the Met receptor tyrosine kinase fusion protein, Tpr-Met,
               patients with NTRK fusion cancer. Ann Oncol, 30 Suppl 8:   involves exclusion from the endocytic degradative pathway.
               viii16–viii22.                                     Oncogene, 26(51): 7213–7221.
               https://doi.org/10.1093/annonc/mdz384              https://doi.org/10.1038/sj.onc.1210522
            76.  Klein R, Smeyne RJ, Wurst W,  et al., 1993, Targeted   87.  Hernandez L, Pinyol M, Hernandez S,  et al., 1999, TRK-
               disruption of the trkB neurotrophin receptor gene results   fused gene (TFG) is a new partner of ALK in anaplastic
               in nervous system lesions and neonatal death. Cell, 75(1):   large cell lymphoma producing two structurally different
               113–122.                                           TFG-ALK translocations. Blood, 94(9): 3265–3268.
               https://doi.org/10.1016/s0092-8674(05)80088-1      https://doi.org/10.1182/blood.v94.9.3265
            77.  International  Cancer Genome Consortium  PedBrain   88.  Slotkin EK, Diolaiti D, Shukla NN,  et al., 2019, Patient-
               Tumor  P, 2016, Recurrent MET fusion genes represent a drug   driven discovery, therapeutic targeting, and post-clinical
               target in pediatric glioblastoma. Nat Med, 22(11): 1314–1320.  validation of a novel AKT1 fusion-driven cancer.  Cancer
                                                                  Discov, 9(5): 605–616.
               https://doi.org/10.1038/nm.4204
                                                                  https://doi.org/10.1158/2159-8290.cd-18-0953
            78.  Johnson A, Severson E, Gay L, et al., 2017, Comprehensive
               genomic profiling of 282 pediatric low-and high-grade   89.  Choudhury NJ, Drilon A, 2020, Decade in review: A new era
               gliomas reveals genomic drivers, tumor mutational   for RET-rearranged lung cancers. Transl Lung Cancer Res,
               burden, and hypermutation signatures. Oncologist, 22(12):   9(6): 2571–2580.
               1478–1490.
                                                                  https://doi.org/10.21037/tlcr-20-346
               https://doi.org/10.1634/theoncologist.2017-0242
                                                               90.  Ziegler DS, Wong M, Mayoh C, et al., 2018, Brief report:
            79.  Morrison KB, Tognon CE, Garnett MJ, et al., 2002, ETV6-  Potent clinical and radiological response to larotrectinib in
               NTRK3 transformation requires insulin-like growth factor 1   TRK fusion-driven high-grade glioma. Br J Cancer, 119(6):
               receptor signaling and is associated with constitutive IRS-1   693–696.
               tyrosine phosphorylation. Oncogene, 21(37): 5684–5695.
                                                                  https://doi.org/10.1038/s41416-018-0251-2
               https://doi.org/10.1038/sj.onc.1205669
                                                               91.  Drilon  A,  2019,  TRK  inhibitors  in  TRK  fusion-positive
            80.  Nelson KN, Meyer AN, Siari A,  et al., 2016, Oncogenic   cancers. Ann Oncol, 30 Suppl 8: viii23–viii30.
               gene fusion FGFR3-TACC3 is regulated by tyrosine      https://doi.org/10.1093/annonc/mdz282
               phosphorylation. Mol Cancer Res, 14(5): 458–469.
                                                               92.  Li Z, Shen L, Ding D,  et al., 2018, Efficacy of crizotinib
               https://doi.org/10.1158/1541-7786.mcr-15-0497
                                                                  among different types of ROS1 fusion partners in patients
            81.  Parker BC, Annala MJ, Cogdell DE,  et al., 2013, The   with ROS1-rearranged non-small cell lung cancer. J Thorac
               tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a   Oncol, 13(7): 987–995.
               regulation in glioblastoma. J Clin Invest, 123(2): 855–865.
                                                                  https://doi.org/10.1016/j.jtho.2018.04.016
               https://doi.org/10.1158/1538-7445.am2013-5311
                                                               93.  Forschner A, Forchhammer S, Bonzheim I, 2020, NTRK
            82.  Frattini V, Pagnotta SM, Tala,  et  al., 2018, A metabolic   gene  fusions  in melanoma:  Detection, prevalence  and
               function of FGFR3-TACC3 gene fusions in cancer. Nature,   potential therapeutic implications.  J  Dtsch Dermatol Ges,
               553(7687): 222–227.                                18(12): 1387–1392.
               https://doi.org/10.1038/nature25171                https://doi.org/10.1111/ddg.14160
            83.  Hu H, Mu Q, Bao Z, et al., 2018, Mutational landscape of   94.  Goyal  L,  Saha  SK,  Liu LY,  et al.,  2017,  Polyclonal
               secondary glioblastoma guides MET-targeted trial in brain   secondary FGFR2 mutations drive acquired resistance to
               tumor. Cell, 175(6): 1665–1678.e1618.              FGFR inhibition in patients with FGFR2 fusion-positive
                                                                  cholangiocarcinoma. Cancer Discov, 7(3): 252–263.
            84.  Davare MA, Henderson JJ, Agarwal A, et al., 2018, Rare but
               recurrent ROS1 fusions resulting from chromosome 6q22      https://doi.org/10.1158/1538-7445.am2017-4114
               microdeletions are targetable oncogenes in glioma.  Clin   95.  Rosen EY, Johnson ML, Clifford SE, et al., 2021, Overcoming
               Cancer Res, 24(24): 6471–6482.
                                                                  MET-dependent resistance to selective RET inhibition in
               https://doi.org/10.1158/1078-0432.ccr-18-1052      patients with RET fusion-positive lung cancer by combining


            Volume 1 Issue 1 (2022)                         11                      https://doi.org/10.36922/gtm.v1i1.54
   61   62   63   64   65   66   67   68   69   70   71