Page 66 - GTM-1-1
P. 66
Global Translational Medicine Fusion events identified in tumor
74. Wu G, Diaz AK, Paugh BS, et al., 2014, The genomic landscape 85. Matjasic A, Zupan A, Bostjancic E, et al., 2002, A novel PTPRZ1–
of diffuse intrinsic pontine glioma and pediatric non- ETV1 fusion in gliomas. Brain Pathol, 30(2): 226–234.
brainstem high-grade glioma. Nat Genet, 46(5): 444–450.
https://doi.org/10.1111/bpa.12776
https://doi.org/10.1038/ng.2938
86. Mak HH, Peschard P, Lin T, et al., 2007, Oncogenic activation
75. Solomon JP, Benayed R, Hechtman JF, et al., 2019, Identifying of the Met receptor tyrosine kinase fusion protein, Tpr-Met,
patients with NTRK fusion cancer. Ann Oncol, 30 Suppl 8: involves exclusion from the endocytic degradative pathway.
viii16–viii22. Oncogene, 26(51): 7213–7221.
https://doi.org/10.1093/annonc/mdz384 https://doi.org/10.1038/sj.onc.1210522
76. Klein R, Smeyne RJ, Wurst W, et al., 1993, Targeted 87. Hernandez L, Pinyol M, Hernandez S, et al., 1999, TRK-
disruption of the trkB neurotrophin receptor gene results fused gene (TFG) is a new partner of ALK in anaplastic
in nervous system lesions and neonatal death. Cell, 75(1): large cell lymphoma producing two structurally different
113–122. TFG-ALK translocations. Blood, 94(9): 3265–3268.
https://doi.org/10.1016/s0092-8674(05)80088-1 https://doi.org/10.1182/blood.v94.9.3265
77. International Cancer Genome Consortium PedBrain 88. Slotkin EK, Diolaiti D, Shukla NN, et al., 2019, Patient-
Tumor P, 2016, Recurrent MET fusion genes represent a drug driven discovery, therapeutic targeting, and post-clinical
target in pediatric glioblastoma. Nat Med, 22(11): 1314–1320. validation of a novel AKT1 fusion-driven cancer. Cancer
Discov, 9(5): 605–616.
https://doi.org/10.1038/nm.4204
https://doi.org/10.1158/2159-8290.cd-18-0953
78. Johnson A, Severson E, Gay L, et al., 2017, Comprehensive
genomic profiling of 282 pediatric low-and high-grade 89. Choudhury NJ, Drilon A, 2020, Decade in review: A new era
gliomas reveals genomic drivers, tumor mutational for RET-rearranged lung cancers. Transl Lung Cancer Res,
burden, and hypermutation signatures. Oncologist, 22(12): 9(6): 2571–2580.
1478–1490.
https://doi.org/10.21037/tlcr-20-346
https://doi.org/10.1634/theoncologist.2017-0242
90. Ziegler DS, Wong M, Mayoh C, et al., 2018, Brief report:
79. Morrison KB, Tognon CE, Garnett MJ, et al., 2002, ETV6- Potent clinical and radiological response to larotrectinib in
NTRK3 transformation requires insulin-like growth factor 1 TRK fusion-driven high-grade glioma. Br J Cancer, 119(6):
receptor signaling and is associated with constitutive IRS-1 693–696.
tyrosine phosphorylation. Oncogene, 21(37): 5684–5695.
https://doi.org/10.1038/s41416-018-0251-2
https://doi.org/10.1038/sj.onc.1205669
91. Drilon A, 2019, TRK inhibitors in TRK fusion-positive
80. Nelson KN, Meyer AN, Siari A, et al., 2016, Oncogenic cancers. Ann Oncol, 30 Suppl 8: viii23–viii30.
gene fusion FGFR3-TACC3 is regulated by tyrosine https://doi.org/10.1093/annonc/mdz282
phosphorylation. Mol Cancer Res, 14(5): 458–469.
92. Li Z, Shen L, Ding D, et al., 2018, Efficacy of crizotinib
https://doi.org/10.1158/1541-7786.mcr-15-0497
among different types of ROS1 fusion partners in patients
81. Parker BC, Annala MJ, Cogdell DE, et al., 2013, The with ROS1-rearranged non-small cell lung cancer. J Thorac
tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a Oncol, 13(7): 987–995.
regulation in glioblastoma. J Clin Invest, 123(2): 855–865.
https://doi.org/10.1016/j.jtho.2018.04.016
https://doi.org/10.1158/1538-7445.am2013-5311
93. Forschner A, Forchhammer S, Bonzheim I, 2020, NTRK
82. Frattini V, Pagnotta SM, Tala, et al., 2018, A metabolic gene fusions in melanoma: Detection, prevalence and
function of FGFR3-TACC3 gene fusions in cancer. Nature, potential therapeutic implications. J Dtsch Dermatol Ges,
553(7687): 222–227. 18(12): 1387–1392.
https://doi.org/10.1038/nature25171 https://doi.org/10.1111/ddg.14160
83. Hu H, Mu Q, Bao Z, et al., 2018, Mutational landscape of 94. Goyal L, Saha SK, Liu LY, et al., 2017, Polyclonal
secondary glioblastoma guides MET-targeted trial in brain secondary FGFR2 mutations drive acquired resistance to
tumor. Cell, 175(6): 1665–1678.e1618. FGFR inhibition in patients with FGFR2 fusion-positive
cholangiocarcinoma. Cancer Discov, 7(3): 252–263.
84. Davare MA, Henderson JJ, Agarwal A, et al., 2018, Rare but
recurrent ROS1 fusions resulting from chromosome 6q22 https://doi.org/10.1158/1538-7445.am2017-4114
microdeletions are targetable oncogenes in glioma. Clin 95. Rosen EY, Johnson ML, Clifford SE, et al., 2021, Overcoming
Cancer Res, 24(24): 6471–6482.
MET-dependent resistance to selective RET inhibition in
https://doi.org/10.1158/1078-0432.ccr-18-1052 patients with RET fusion-positive lung cancer by combining
Volume 1 Issue 1 (2022) 11 https://doi.org/10.36922/gtm.v1i1.54

