Page 85 - GTM-1-2
P. 85

Global Translational Medicine                                               Succinate metabolism in CVD



               proteomics survey. Mol Cell, 23: 607–618.          https://doi.org/10.1038/nature13909
               https://doi.org/10.1016/j.molcel.2006.06.026    25.  Mills E, O’Neill LA, 2014, Succinate: A metabolic signal in
                                                                  inflammation. Trends Cell Biol, 24: 313–320.
            14.  Du J, Zhou Y, Su X, et al., 2011, Sirt5 is a NAD-dependent
               protein lysine demalonylase and desuccinylase.  Science,      https://doi.org/10.1016/j.tcb.2013.11.008
               334: 806–809.
                                                               26.  Reddy A, Bozi LH, Yaghi OK,  et al., 2020, pH-gated
               https://doi.org/10.1126/science.1207861            succinate secretion regulates muscle remodeling in response
                                                                  to exercise. Cell, 183: 62–75 e17.
            15.  Faith JJ, Ahern PP, Ridaura VK, et al., 2014, Identifying gut
               microbe-host phenotype relationships using combinatorial      https://doi.org/10.1016/j.cell.2020.08.039
               communities in gnotobiotic mice.  Sci Transl Med,   27.  An YA, Chen S, Deng Y,  et al., 2021, The mitochondrial
               6: 220ra211.                                       dicarboxylate carrier prevents hepatic lipotoxicity by

               https://doi.org/10.1126/scitranslmed.3008051       inhibiting white adipocyte lipolysis. J Hepatol, 75: 387–399.
            16.  Macy JM, Ljungdahl LG, Gottschalk G, 1978, Pathway of      https://doi.org/10.1016/j.jhep.2021.03.006
               succinate and propionate formation in Bacteroides fragilis.   28.  Prag HA, Gruszczyk AV, Huang MM, et al., 2021, Mechanism
               J Bacteriol, 134: 84–91.                           of succinate efflux upon reperfusion of the ischaemic heart.

               https://doi.org/10.1128/jb.134.1.84-91.1978        Cardiovasc Res, 117: 1188–1201.
            17.  De Vadder F, Kovatcheva-Datchary P, Zitoun C,  et al.,      https://doi.org/10.1093/cvr/cvaa148
               2016,  Microbiota-produced  succinate  improves glucose   29.  Bisbach  CM, Hass DT, Thomas  ED,  et al., 2022,
               homeostasis via intestinal gluconeogenesis.  Cell Metab,   Monocarboxylate transporter 1 (MCT1) mediates succinate
               24: 151–157.                                       export in the retina. Invest Ophthalmol Vis Sci, 63: 1.
               https://doi.org/10.1016/j.cmet.2016.06.013         https://doi.org/10.1167/iovs.63.4.1
            18.  De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al.,   30.  He W, Miao FJ, Lin DC,  et al., 2004, Citric acid cycle
               2014, Microbiota-generated metabolites promote metabolic   intermediates  as  ligands  for  orphan  G-protein-coupled
               benefits via gut-brain neural circuits. Cell, 156: 84–96.   receptors. Nature, 429: 188–193.
               https://doi.org/10.1016/j.cell.2013.12.016         https://doi.org/10.1038/nature02488
            19.  Watanabe Y, Nagai F, Morotomi M, 2012, Characterization   31.  Haffke M, Fehlmann D, Rummel G, et al., 2019, Structural
               of phascolarctobacterium succinatutens sp. nov., an   basis of species-selective antagonist binding to the succinate
               asaccharolytic, succinate-utilizing bacterium isolated from   receptor. Nature, 574: 581–585.
               human feces. Appl Environ Microbiol, 78: 511–518.
                                                                  https://doi.org/10.1038/s41586-019-1663-8
               https://doi.org/10.1128/AEM.06035-11
                                                               32.  Macaulay IC, Tijssen MR, Thijssen-Timmer DC,  et al.,
            20.  Fernandez-Veledo S, Vendrell J, 2019, Gut microbiota-  2007, Comparative gene expression profiling of  in vitro
               derived succinate: Friend or foe in human metabolic   differentiated megakaryocytes and erythroblasts identifies
               diseases? Rev Endocr Metab Disord, 20: 439–447.    novel activatory and inhibitory platelet membrane proteins.
               https://doi.org/10.1007/s11154-019-09513-z         Blood, 109: 3260–3269.
            21.  Connors  J,  Dawe  N,  Van  Limbergen  J, 2018,  The  role  of      https://doi.org/10.1182/blood-2006-07-036269
               succinate in the regulation of intestinal inflammation.   33.  Rubic T, Lametschwandtner G, Jost S, et al., 2008, Triggering
               Nutrients, 11: 25.                                 the succinate receptor GPR91 on dendritic cells enhances
               https://doi.org/10.3390/nu11010025                 immunity. Nat Immunol, 9: 1261–1269.
            22.  Ariake K, Ohkusa T, Sakurazawa T,  et al., 2000, Roles of      https://doi.org/10.1038/ni.1657
               mucosal bacteria and succinic acid in colitis caused by   34.  Saraiva AL, Veras FP, Peres RS,  et al., 2018, Succinate
               dextran sulfate sodium in mice. J Med Dent Sci, 47: 233–241.  receptor deficiency attenuates arthritis by reducing dendritic
            23.  Tannahill GM, Curtis AM, Adamik J, et al., 2013, Succinate   cell traffic and expansion of Th17 cells in the lymph nodes.
               is an inflammatory signal that induces IL-1beta through   FASEB J, 32: 6550–6558.
               HIF-1alpha. Nature, 496: 238–242.                  https://doi.org/10.1096/fj.201800285
               https://doi.org/10.1038/nature11986             35.  Trauelsen M, Rexen Ulven E, Hjorth SA, et al., 2017, Receptor
            24.  Chouchani ET, Pell VR, Gaude E,  et al., 2014, Ischaemic   structure-based discovery of non-metabolite agonists for
               accumulation of succinate controls reperfusion injury   the succinate receptor GPR91. Mol Metab, 6: 1585–1596.
               through mitochondrial ROS. Nature, 515: 431–435.      https://doi.org/10.1016/j.molmet.2017.09.005


            Volume 1 Issue 2 (2022)                         10                     https://doi.org/10.36922/gtm.v1i2.160
   80   81   82   83   84   85   86   87   88   89   90