Page 115 - GTM-2-3
P. 115

Global Translational Medicine                                     TEs link to Parkinson’s risk and progression



               https://doi.org/10.1126/science.abk3112         37.  Li  H,  Durbin  R,  2009,  Fast  and  accurate  short  read
                                                                  alignment with Burrows-Wheeler transform. Bioinformatics,
            26.  Mills RE, Bennett EA, Iskow RC,  et al., 2007, Which
               transposable elements are active in the human genome?   25: 1754–1760.
               Trends Genet, 23: 183–191.                         https://doi.org/10.1093/bioinformatics/btp324
               https://doi.org/10.1016/j.tig.2007.02.006       38.  DePristo MA, Banks E, Poplin R, et al., 2011, A framework
                                                                  for  variation  discovery  and  genotyping  using  next-
            27.  Kazazian HH Jr., Wong C, Youssoufian H,  et al., 1988,   generation DNA sequencing data. Nat Genet, 43: 491–498.
               Haemophilia  A  resulting  from  de novo  insertion  of  L1
               sequences represents a novel mechanism for mutation in      https://doi.org/10.1038/ng.806
               man. Nature, 332: 164–166.                      39.  Regier AA, Farjoun Y, Larson DE, et al., 2018, Functional
               https://doi.org/10.1038/332164a0                   equivalence of genome sequencing analysis pipelines
                                                                  enables harmonized variant calling across human genetics
            28.  Payer LM, Steranka JP, Yang WR,  et al., 2017, Structural   projects. Nat Commun, 9: 4038.
               variants caused by Alu insertions are associated with risks
               for many human diseases. Proc Natl Acad Sci U S A, 114:      https://doi.org/10.1038/s41467-018-06159-4
               E3984–E3992.                                    40.  Gardner EJ, Lam VK, Harris DN, et al., 2017, The mobile
               https://doi.org/10.1073/pnas.1704117114            element locator tool (MELT): Population-scale mobile
                                                                  element discovery and biology. Genome Res, 27: 1916–1929.
            29.  Payer LM, Burns KH, 2019, Transposable elements in
               human genetic disease. Nat Rev Genet, 20: 760–772.     https://doi.org/10.1101/gr.218032.116
               https://doi.org/10.1038/s41576-019-0165-8       41.  Sudmant PH, Rausch T, Gardner EJ,  et  al., 2015, An
                                                                  integrated map of structural variation in 2,504 human
            30.  Burns KH, 2020, Our conflict with transposable elements and   genomes. Nature, 526: 75–81.
               its implications for human disease. Annu Rev Pathol, 15: 51–70.
                                                                  https://doi.org/10.1038/nature15394
               https://doi.org/10.1146/annurev-pathmechdis-012419-032633
                                                               42.  Niu Y, Teng X, Zhou H, et al., 2022, Characterizing mobile
            31.  Ahmadi A, De Toma I, Vilor-Tejedor N,  et al., 2020,   element insertions in 5675 genomes.  Nucleic Acids Res,
               Transposable elements in brain health and disease. Ageing   50: 2493–2508.
               Res Rev, 64: 101153.
                                                                  https://doi.org/10.1093/nar/gkac128
               https://doi.org/10.1016/j.arr.2020.101153
                                                               43.  Danecek P, Auton A, Abecasis G, et al., 2011, The variant call
            32.  Pfaff AL, Bubb VJ, Quinn JP,  et al., 2021, Reference SVA   format and VCFtools. Bioinformatics, 27: 2156–2158.
               insertion  polymorphisms  are  associated  with  Parkinson’s
               disease  progression and  differential  gene  expression.  NPJ      https://doi.org/10.1093/bioinformatics/btr330
               Parkinsons Dis, 7: 44.                          44.  Purcell S, Neale B, Todd-Brown K,  et al., 2007, PLINK:
               https://doi.org/10.1038/s41531-021-00189-4         A  tool set for whole-genome association and population-
                                                                  based linkage analyses. Am J Hum Genet, 81: 559–575.
            33.  Koks S, Pfaff AL, Singleton LM, et al., 2022, Non-reference
               genome transposable elements (TEs) have a significant      https://doi.org/10.1086/519795
               impact on the progression of the Parkinson’s disease. Exp   45.  McLaren W, Gil L, Hunt SE, et al., 2016, The ensembl variant
               Biol Med, 247: 1680–1690.                          effect predictor. Genome Biol, 17: 122.
               https://doi.org/10.1177/15353702221117147          https://doi.org/10.1186/s13059-016-0974-4
            34.  Parkinson Progression Marker Initiative, 2011, The   46.  Hubisz MJ, Pollard KS, Siepel A, 2011, PHAST and
               Parkinson  progression  marker  initiative  (PPMI).  Prog   RPHAST: Phylogenetic analysis with space/time models.
               Neurobiol, 95: 629–635.                            Brief Bioinform, 12: 41–51.
               https://doi.org/10.1016/j.pneurobio.2011.09.005     https://doi.org/10.1093/bib/bbq072
            35.  Rosenthal LS, Drake D, Alcalay RN, et al., 2016, The NINDS   47.  Pollard KS, Hubisz MJ, Rosenbloom KR,  et al., 2010,
               Parkinson’s disease biomarkers program.  Mov Disord,   Detection of nonneutral substitution rates on mammalian
               31: 915–923.                                       phylogenies. Genome Res, 20: 110–121.
               https://doi.org/10.1002/mds.26438                  https://doi.org/10.1101/gr.097857.109
            36.  Kang UJ, Goldman JG, Alcalay RN, et al., 2016, The BioFIND   48.  Navarro Gonzalez J, Zweig AS, Speir ML, et al., 2021, The
               study: Characteristics of a clinically typical Parkinson’s   UCSC genome browser database: 2021 update. Nucleic Acids
               disease biomarker cohort. Mov Disord, 31: 924–932.  Res, 49: D1046–D1057.
               https://doi.org/10.1002/mds.26613                  https://doi.org/10.1093/nar/gkaa1070


            Volume 2 Issue 3 (2023)                         11                       https://doi.org/10.36922/gtm.1583
   110   111   112   113   114   115   116   117   118