Page 116 - GTM-2-3
P. 116

Global Translational Medicine                                     TEs link to Parkinson’s risk and progression



            49.  Qiao  Y,  Ren  C,  Huang  S,  et al.,  2020,  High-resolution   504–514.
               annotation of the mouse preimplantation embryo      https://doi.org/10.1038/s41593-022-01031-7
               transcriptome using  long-read  sequencing.  Nat Commun,
               11: 2653.                                       59.  Bernard BJ, Nigam N, Burkitt K,  et al., 2021, SMYD3:
                                                                  A regulator of epigenetic and signaling pathways in cancer.
               https://doi.org/10.1038/s41467-020-16444-w         Clin Epigenetics, 13: 45.
            50.  Karczewski KJ,  Francioli  LC,  Tiao  G,  et al.,  2020,  The      https://doi.org/10.1186/s13148-021-01021-9
               mutational constraint spectrum quantified from variation in
               141,456 humans. Nature, 581: 434–443.           60.  Yang D, Wei G, Long F, et al., 2020, Histone methyltransferase
                                                                  Smyd3 is a new regulator for vascular senescence. Aging Cell,
               https://doi.org/10.1038/s41586-020-2308-7          19: e13212.
            51.  Quinlan AR, Hall IM, 2010, BEDTools: A flexible suite of      https://doi.org/10.1111/acel.13212
               utilities for comparing genomic features.  Bioinformatics,
               26: 841–842.                                    61.  Song W, Li Q, Wang T, et al., 2022, Putative complement
                                                                  control protein CSMD3 dysfunction impairs synaptogenesis
               https://doi.org/10.1093/bioinformatics/btq033      and induces neurodevelopmental disorders.  Brain Behav
            52.  Price AL, Patterson NJ, Plenge RM, et al., 2006, Principal   Immun, 102: 237–250.
               components analysis corrects for stratification in genome-     https://doi.org/10.1016/j.bbi.2022.02.027
               wide association studies. Nat Genet, 38: 904–909.
                                                               62.  Lawson HA, Liang Y, Wang T, 2023, Transposable elements
               https://doi.org/10.1038/ng1847                     in mammalian chromatin organization.  Nat Rev  Genet,
            53.  Bates  D,  Mächler  M,  Bolker  B,  et al.,  2015,  Fitting  linear   24: 712–723.
               mixed-effects models using lme4. J Stat Softw, 67: 1–48.     https://doi.org/10.1038/s41576-023-00609-6

               https://doi.org/10.18637/jss.v067.i01           63.  Tan EK, Chao YX, West A, et al., 2020, Parkinson disease
            54.  Kuznetsova A, Brockhoff PB, Christensen RHB, 2017,   and the immune system  -  associations, mechanisms and
               ImerTest Package: Tests in linear mixed effects models. J Stat   therapeutics. Nat Rev Neurol, 16: 303–318.
               Softw, 82: 1–26.                                   https://doi.org/10.1038/s41582-020-0344-4
               https://doi.org/10.18637/jss.v082.i13           64.  Tansey MG, Wallings RL, Houser MC,  et al., 2022,
            55.  Wang L, Rishishwar L, Marino-Ramirez L,  et al., 2017,   Inflammation and immune dysfunction in Parkinson
               Human   population-specific  gene  expression  and  disease. Nat Rev Immunol, 22: 657–673.
               transcriptional network modification with polymorphic      https://doi.org/10.1038/s41577-022-00684-6
               transposable elements. Nucleic Acids Res, 45: 2318–2328.
                                                               65.  Ryan E, Seehra G, Sharma P, et al., 2019, GBA1-associated
               https://doi.org/10.1093/nar/gkw1286                parkinsonism: New insights and therapeutic opportunities.
            56.  Shabalin AA, 2012, Matrix eQTL: Ultra fast eQTL analysis   Curr Opin Neurol, 32: 589–596.
               via large matrix operations. Bioinformatics, 28: 1353–1358.     https://doi.org/10.1097/WCO.0000000000000715
               https://doi.org/10.1093/bioinformatics/bts163   66.  Liu G, Boot B, Locascio JJ,  et al., 2016, Specifically
            57.  Lander ES, Linton LM, Birren B,  et al., 2001, Initial   neuropathic Gaucher’s mutations accelerate cognitive
               sequencing and analysis of the human genome.  Nature,   decline in Parkinson’s. Ann Neurol, 80: 674–685.
               409: 860–921.                                      https://doi.org/10.1002/ana.24781
               https://doi.org/10.1038/35057062                67.  Lange LM, Avenali M, Ellis M,  et al., 2023, Elucidating
                                                                  causative gene variants in hereditary Parkinson’s disease
            58.  Vialle RA, de Paiva Lopes K, Bennett DA, et al., 2022,
               Integrating whole-genome sequencing with multi-    in the Global Parkinson’s Genetics Program (GP2).  NPJ
               omic data reveals the impact of structural variants on   Parkinsons Dis, 9: 100.
               gene regulation in the human brain.  Nat Neurosci, 25:        https://doi.org/10.1038/s41531-023-00526-9














            Volume 2 Issue 3 (2023)                         12                       https://doi.org/10.36922/gtm.1583
   111   112   113   114   115   116   117   118