Page 116 - GTM-2-3
P. 116
Global Translational Medicine TEs link to Parkinson’s risk and progression
49. Qiao Y, Ren C, Huang S, et al., 2020, High-resolution 504–514.
annotation of the mouse preimplantation embryo https://doi.org/10.1038/s41593-022-01031-7
transcriptome using long-read sequencing. Nat Commun,
11: 2653. 59. Bernard BJ, Nigam N, Burkitt K, et al., 2021, SMYD3:
A regulator of epigenetic and signaling pathways in cancer.
https://doi.org/10.1038/s41467-020-16444-w Clin Epigenetics, 13: 45.
50. Karczewski KJ, Francioli LC, Tiao G, et al., 2020, The https://doi.org/10.1186/s13148-021-01021-9
mutational constraint spectrum quantified from variation in
141,456 humans. Nature, 581: 434–443. 60. Yang D, Wei G, Long F, et al., 2020, Histone methyltransferase
Smyd3 is a new regulator for vascular senescence. Aging Cell,
https://doi.org/10.1038/s41586-020-2308-7 19: e13212.
51. Quinlan AR, Hall IM, 2010, BEDTools: A flexible suite of https://doi.org/10.1111/acel.13212
utilities for comparing genomic features. Bioinformatics,
26: 841–842. 61. Song W, Li Q, Wang T, et al., 2022, Putative complement
control protein CSMD3 dysfunction impairs synaptogenesis
https://doi.org/10.1093/bioinformatics/btq033 and induces neurodevelopmental disorders. Brain Behav
52. Price AL, Patterson NJ, Plenge RM, et al., 2006, Principal Immun, 102: 237–250.
components analysis corrects for stratification in genome- https://doi.org/10.1016/j.bbi.2022.02.027
wide association studies. Nat Genet, 38: 904–909.
62. Lawson HA, Liang Y, Wang T, 2023, Transposable elements
https://doi.org/10.1038/ng1847 in mammalian chromatin organization. Nat Rev Genet,
53. Bates D, Mächler M, Bolker B, et al., 2015, Fitting linear 24: 712–723.
mixed-effects models using lme4. J Stat Softw, 67: 1–48. https://doi.org/10.1038/s41576-023-00609-6
https://doi.org/10.18637/jss.v067.i01 63. Tan EK, Chao YX, West A, et al., 2020, Parkinson disease
54. Kuznetsova A, Brockhoff PB, Christensen RHB, 2017, and the immune system - associations, mechanisms and
ImerTest Package: Tests in linear mixed effects models. J Stat therapeutics. Nat Rev Neurol, 16: 303–318.
Softw, 82: 1–26. https://doi.org/10.1038/s41582-020-0344-4
https://doi.org/10.18637/jss.v082.i13 64. Tansey MG, Wallings RL, Houser MC, et al., 2022,
55. Wang L, Rishishwar L, Marino-Ramirez L, et al., 2017, Inflammation and immune dysfunction in Parkinson
Human population-specific gene expression and disease. Nat Rev Immunol, 22: 657–673.
transcriptional network modification with polymorphic https://doi.org/10.1038/s41577-022-00684-6
transposable elements. Nucleic Acids Res, 45: 2318–2328.
65. Ryan E, Seehra G, Sharma P, et al., 2019, GBA1-associated
https://doi.org/10.1093/nar/gkw1286 parkinsonism: New insights and therapeutic opportunities.
56. Shabalin AA, 2012, Matrix eQTL: Ultra fast eQTL analysis Curr Opin Neurol, 32: 589–596.
via large matrix operations. Bioinformatics, 28: 1353–1358. https://doi.org/10.1097/WCO.0000000000000715
https://doi.org/10.1093/bioinformatics/bts163 66. Liu G, Boot B, Locascio JJ, et al., 2016, Specifically
57. Lander ES, Linton LM, Birren B, et al., 2001, Initial neuropathic Gaucher’s mutations accelerate cognitive
sequencing and analysis of the human genome. Nature, decline in Parkinson’s. Ann Neurol, 80: 674–685.
409: 860–921. https://doi.org/10.1002/ana.24781
https://doi.org/10.1038/35057062 67. Lange LM, Avenali M, Ellis M, et al., 2023, Elucidating
causative gene variants in hereditary Parkinson’s disease
58. Vialle RA, de Paiva Lopes K, Bennett DA, et al., 2022,
Integrating whole-genome sequencing with multi- in the Global Parkinson’s Genetics Program (GP2). NPJ
omic data reveals the impact of structural variants on Parkinsons Dis, 9: 100.
gene regulation in the human brain. Nat Neurosci, 25: https://doi.org/10.1038/s41531-023-00526-9
Volume 2 Issue 3 (2023) 12 https://doi.org/10.36922/gtm.1583

