Page 40 - GTM-3-1
P. 40
Global Translational Medicine Immune response in humans due to COVID-19 infection
Alpha variant B.1.1.7. Cell Rep. 2021;35(13):109292. syncytia formation. EMBO J. 2021;40(24):e108944.
doi: 10.1016/j.celrep.2021.109292 doi: 10.15252/embj.2021108944
54. Zhang J, Xiao T, Cai Y, et al. Membrane fusion and immune 61. Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2
evasion by the spike protein of SARS-CoV-2 Delta variant. Omicron variant replication in human bronchus and lung
Science. 2021;374(6573):1353-1360. ex vivo. Nature. 2022;603(7902):715-720.
doi: 10.1126/science.abl9463 doi: 10.1038/s41586-022-04479-6
55. Sanches PRS, Charlie-Silva I, Braz HLB, et al. Recent 62. Meng B, Abdullahi A, Ferreira IAT, et al. Altered TMPRSS2
advances in SARS-CoV-2 Spike protein and RBD mutations usage by SARS-CoV-2 Omicron impacts infectivity and
comparison between new variants Alpha (B.1.1.7, fusogenicity. Nature. 2022;603(7902):706-714.
United Kingdom), Beta (B.1.351, South Africa), Gamma doi: 10.1038/s41586-022-04474-x
(P.1, Brazil) and Delta (B.1.617.2, India). J Virus Erad.
2021;7(3):100054. 63. AbdelMassih A, Sedky A, Shalaby A, et al. From HIV to
COVID-19, molecular mechanisms of pathogens’ trade-off
doi: 10.1016/j.jve.2021.100054 and persistence in the community, potential targets for new
56. Lubinski B, Fernandes MHV, Frazier L, et al. Functional drug development. Bull Natl Res Cent. 2022;46(1):194.
evaluation of the P681H mutation on the proteolytic doi: 10.1186/s42269-022-00879-w
activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike.
iScience. 2022;25(1):103589. 64. Willett BJ, Grove J, MacLean OA, et al. SARS-CoV-2
Omicron is an immune escape variant with an altered cell
doi: 10.1016/j.isci.2021.103589 entry pathway. Nat Microbiol. 2022;7(8):1161-1179.
57. Gupta AM, Chakrabarti J, Mandal S. Non-synonymous doi: 10.1038/s41564-022-01143-7
mutations of SARS-CoV-2 leads epitope loss and segregates
its variants. Microbes Infect. 2020;22(10):598-607. 65. Pišlar A, Mitrović A, Sabotič J, et al. The role of cysteine
peptidases in coronavirus cell entry and replication: The
doi: 10.1016/j.micinf.2020.10.004 therapeutic potential of cathepsin inhibitors. PLoS Pathog.
58. Vitiello A, Ferrara F, Auti AM, Di Domenico M, Boccellino 2020;16(11):e1009013.
M. Advances in the Omicron variant development. J Intern doi: 10.1371/journal.ppat.1009013
Med. 2022;292(1):81-90.
66. Kubo Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N.
doi: 10.1111/joim.13478 Retrovirus entry by endocytosis and cathepsin proteases.
59. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS- Adv Virol. 2012;2012:640894.
CoV-2 cell receptor gene ACE2 in a wide variety of human doi: 10.1155/2012/640894
tissues. Infect Dis Poverty. 2020;9(1):45.
67. Gomes CP, Fernandes DE, Casimiro F, et al. Cathepsin L in
doi: 10.1186/s40249-020-00662-x COVID-19: From pharmacological evidences to genetics.
Front Cell Infect Microbiol. 2020;10:589505.
60. Rajah MM, Hubert M, Bishop E, et al. SARS‐CoV‐2 Alpha,
Beta, and Delta variants display enhanced Spike‐mediated doi: 10.3389/fcimb.2020.589505
Volume 3 Issue 1 (2024) 10 https://doi.org/10.36922/gtm.2228

