Page 38 - GTM-3-3
P. 38

Global Translational Medicine                                  Computational advances in cancer liquid biopsy



               2023;616(7955):113-122.                            doi: 10.1038/s41597-022-01712-9
               doi: 10.1038/s41586-023-05795-1                 114. Mignan A, Broccardo M. One neuron versus deep learning
                                                                  in aftershock prediction. Nature. 2019;574(7776):E1-E3.
            103. Van TM, Blank CU. A  user’s perspective on GeoMxTM
               digital spatial profiling. Immunooncol Technol. 2019;1:11-18.     doi: 10.1038/s41586-019-1582-8
               doi: 10.1016/j.iotech.2019.05.001               115. Laubenbacher R, Niarakis A, Helikar T, et al. Building digital
                                                                  twins of the human immune system: Toward a roadmap.
            104. Zeune LL, De Wit S, Berghuis AMS, IJzerman MJ, Terstappen   NPJ Digit Med. 2022;5(1):64.
               LWMM, Brune C. How to agree on a CTC: Evaluating the
               consensus in circulating tumor cell scoring. Cytometry A.      doi: 10.1038/s41746-022-00610-z
               2018;93(12):1202-1206.                          116. Popa EO, Van Hilten M, Oosterkamp E, Bogaardt MJ. The
               doi: 10.1002/cyto.a.23576                          use of digital twins in healthcare: Socio-ethical benefits and
                                                                  socio-ethical risks. Life Sci Soc Policy. 2021;17(1):6.
            105. Nanou A, Stoecklein NH, Doerr D, Driemel C, Terstappen
               LWMM, Coumans FAW. Training an automated circulating      doi: 10.1186/s40504-021-00113-x
               tumor cell classifier when the true classification is uncertain.   117. Goodwin S, McPherson JD, McCombie WR. Coming of age:
               PNAS Nexus. 2024;3(2):pgae048.                     Ten years of next-generation sequencing technologies. Nat
               doi: 10.1093/pnasnexus/pgae048                     Rev Genet. 2016;17(6):333-351.
            106. Svensson CM, Hübler R, Figge MT. Automated classification      doi: 10.1038/nrg.2016.49
               of circulating tumor cells and the impact of interobsever   118. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating
               variability on classifier training and performance. J Immunol   liquid biopsies into the management of cancer. Nat Rev Clin
               Res. 2015;2015:573165.                             Oncol. 2017;14(9):531-548.
               doi: 10.1155/2015/573165                           doi: 10.1038/nrclinonc.2017.14
            107. Lannin TB, Thege FI, Kirby BJ. Comparison and   119. Moser T, Kühberger S, Lazzeri I, Vlachos G, Heitzer E.
               optimization of machine learning methods for automated   Bridging biological cfDNA features and machine learning
               classification of circulating tumor cells.  Cytometry A.   approaches. Trends Genet. 2023;39(4):285-307.
               2016;89(10):922-931.                               doi: 10.1016/j.tig.2023.01.004
               doi: 10.1002/cyto.a.22993                       120. Han Y, Li X, Zhang M,  et al. Enhanced detection of
            108. Raub CB, Nehmetallah G. Holography, machine learning,   genitourinary cancers using fragmentation and copy
               and cancer cells. Cytometry A. 2017;91(8):754-756.  number profiles obtained from urinary cell-free DNA. Clin
                                                                  Chem. 2021;67(2):394-403.
               doi: 10.1002/cyto.a.23112
                                                                  doi: 10.1093/clinchem/hvaa283
            109. Ko J, Baldassano SN, Loh PL, Kording K, Litt B, Issadore  D.
               Machine learning to detect signatures of disease in liquid   121. Ge G, Peng D, Guan B, et al. Urothelial carcinoma detection
               biopsies - a user’s guide. Lab Chip. 2018;18(3):395-405.  based on copy number profiles of urinary cell-free DNA
                                                                  by shallow whole-genome sequencing.  Clin Chem.
               doi: 10.1039/C7LC00955K                            2020;66(1):188-198.
            110. Pirone D, Montella A, Sirico DG,  et  al. Label-free liquid      doi: 10.1373/clinchem.2019.309633
               biopsy through the identification of tumor cells by machine
               learning-powered tomographic phase imaging flow   122. Zeune LL, Boink YE, Van Dalum G, et al. Deep learning of
               cytometry. Sci Rep. 2023;13(1):6042.               circulating tumour cells. Nat Mach Intell. 2020;2(2):124-133.
               doi: 10.1038/s41598-023-32110-9                    doi: 10.1038/s42256-020-0153-x
            111. Rieke N, Hancox J, Li W, et al. The future of digital health   123. Fernandez-Garcia  D,  Nteliopoulos  G, Hastings  RK,  et al.
               with federated learning. NPJ Digit Med. 2020;3(1):119.  Shallow WGS of individual CTCs identifies actionable
                                                                  targets  for informing treatment  decisions  in metastatic
               doi: 10.1038/s41746-020-00323-1                    breast cancer. Br J Cancer. 2022;127(10):1858-1864.
            112. Sohn E. The reproducibility issues that haunt health-care AI.      doi: 10.1038/s41416-022-01962-9
               Nature. 2023;613(7943):402-403.
                                                               124. Chen JY, Chou HH, Lim SC,  et  al. Multiomic
               doi: 10.1038/d41586-023-00023-2                    characterization and drug testing establish circulating
            113. Ravi N, Chaturvedi P, Huerta EA, et al. FAIR principles for   tumor cells as an  ex vivo tool for personalized medicine.
               AI models with a practical application for accelerated high   iScience. 2022;25(10):105081.
               energy diffraction microscopy. Sci Data. 2022;9(1):657.     doi: 10.1016/j.isci.2022.105081



            Volume 3 Issue 3 (2024)                         15                              doi: 10.36922/gtm.3063
   33   34   35   36   37   38   39   40   41   42   43