Page 66 - GTM-3-4
P. 66

Global Translational Medicine                                      Eco-friendly biomedical materials: A review



               remediation. Environ Sci Nano. 20218(7):2081-2097.  116. Jiříčková A, Jankovský O, Sofer Z, Sedmidubský D. Synthesis
                                                                  and applications of  graphene oxide.  Materials (Basel).
               doi: 10.1039/D1EN00354B
                                                                  2022;15(3):920.
            106. Mamidi N, Leija HM, Diabb JM,  et al. Cytotoxicity
               evaluation of unfunctionalized multiwall carbon nanotubes-     doi: 10.3390/ma15030920
               ultrahigh molecular weight polyethylene nanocomposites.   117. Bai RG, Husseini GA.  Graphene-based drug delivery
               J Biomed Mater Res A. 2017;105(11):3042-3049.      systems. In: Unnithan AR, Sasikala ARK, Park CH, Kim CS,
               doi: 10.1002/jbm.a.36168                           editors. Biomimetic Nanoengineered Materials for Advanced
                                                                  Drug Delivery. Ch. 11. Netherlands: Elsevier; 2019.
            107. Mamidi N. Cytotoxicity Evaluation of Carbon Nanotubes for   p. 149-168.
               Biomedical and Tissue Engineering Applications. London:
               IntechOpen; 2019.                                  doi: 10.1016/B978-0-12-814944-7.00011-4
               doi: 10.5772/intechopen.85899                   118. Peña-Bahamonde J, Nguyen HN, Fanourakis SK,
                                                                  Rodrigues  DF.  Recent  advances  in  graphene-based
            108. Qian S, Yan Z, Xu Y,  et al. Carbon nanotubes as   biosensor technology with applications in life sciences.
               electrophysiological building blocks for a bioactive cell   J Nanobiotechnol. 2018;16(1):75.
               scaffold through biological assembly to induce osteogenesis.
               RSC Adv. 2019;9(21):12001-12009.                   doi: 10.1186/s12951-018-0400-z
               doi: 10.1039/C9RA00370C                         119. Mamidi N, Velasco Delgadillo RM, Barrera EV,
                                                                  Ramakrishna S, Annabi N. Carbonaceous nanomaterials
            109. Gupta P, Gupta VK, Huseinov A, Rahm CE, Gazica K,   incorporated biomaterials: The present and future of the
               Alvarez NT. Highly sensitive non-enzymatic glucose   flourishing field. Compos B Eng. 2022;243:110150.
               sensor based on carbon nanotube microelectrode set. Sens
               Actuators B Chem. 2021;348:130688.                 doi: 10.1016/j.compositesb.2022.110150
               doi: 10.1016/j.snb.2021.130688                  120. Özcan M, Volpato CAM, Hian L, Karahan BD, Cesar PF.
                                                                  Graphene for Zirconia and titanium composites in dental
            110. Ajayan PM, Ebbesen TW. Nanometre-size tubes of carbon.   implants: Significance and predictions.  Curr Oral Health
               Rep Progress Phys. 1997;60(10):1025.               Rep. 2022;9(3):66-74.
               doi: 10.1088/0034-4885/60/10/001                   doi: 10.1007/s40496-022-00310-3
            111. Shi Z,  Lian Y, Zhou X,  et al. Mass-production  of single-  121. Shams SS, Zhang R. Graphene synthesis: A review. Mater Sci
               wall  carbon  nanotubes  by  arc  discharge  method.  Carbon.   Poland. 2015;33:566-578.
               1999;37:1449-1453.
                                                                  doi: 10.1515/msp-2015-0079
               doi: 10.1016/S0008-6223(99)00007-X
                                                               122. Xu S, Zhang L, Wang B, Ruoff RS. Chemical vapor
            112. Chan KF, Maznam NAM, Hazan MA,  et al. Multi-walled   deposition of graphene on thin-metal films. Cell Rep Phys
               carbon nanotubes growth by chemical vapour deposition:   Sci. 2021;2(3):100372.
               Effect of precursor flowing path and catalyst size. Carbon
               Trends. 2022;6:100142.                             doi: 10.1016/j.xcrp.2021.100372
               doi: 10.1016/j.cartre.2021.100142               123. Priyadarsini S, Mohanty S, Mukherjee S, Basu S,
                                                                  Mishra M. Graphene and graphene oxide as nanomaterials
            113. Ding EX, Liu P, Khan AT,  et al. Towards the synthesis   for medicine and biology application. J Nanostructure Chem.
               of semiconducting single-walled carbon nanotubes by   2018;8(2):123-137.
               floating-catalyst chemical vapor deposition: Challenges of
               reproducibility. Carbon N Y. 2022;195:92-100.      doi: 10.1007/s40097-018-0265-6
               doi: 10.1016/j.carbon.2022.04.020               124. Gürünlü B, Taşdelen Yücedağ Ç, Bayramoğlu MR. Green
                                                                  synthesis of graphene from graphite in molten salt medium.
            114. Adeniran B, Mokaya R. Low temperature synthesized   J Nanomater. 2020;2020:7029601.
               carbon nanotube superstructures with superior CO   2
               and hydrogen storage capacity.  J  Mater Chem A Mater.      doi: 10.1155/2020/7029601
               2015;3(9):5148-5161.                            125. Bindumadhavan K, Srivastava S, Srivastava I. Green synthesis
               doi: 10.1039/C4TA06539E                            of graphene. J Nanosci Nanotechnol. 2013;13:4320-4324.
            115. Tripathi N, Pavelyev V, Islam SS. Synthesis of carbon      doi: 10.1166/jnn.2013.7461
               nanotubes using green plant extract as catalyst:   126. Meka Chufa B, Abdisa Gonfa B, Yohannes Anshebo T, Adam
               Unconventional concept and its realization. Appl Nanosci.   Workneh G. A novel and simplest green synthesis method of
               2017;7(8):557-566.
                                                                  reduced graphene oxide using methanol extracted Vernonia
               doi: 10.1007/s13204-017-0598-3                     amygdalina: Large-scale production.  Adv Condens Matter


            Volume 3 Issue 4 (2024)                         17                              doi: 10.36922/gtm.4698
   61   62   63   64   65   66   67   68   69   70   71