Page 66 - GTM-3-4
P. 66
Global Translational Medicine Eco-friendly biomedical materials: A review
remediation. Environ Sci Nano. 20218(7):2081-2097. 116. Jiříčková A, Jankovský O, Sofer Z, Sedmidubský D. Synthesis
and applications of graphene oxide. Materials (Basel).
doi: 10.1039/D1EN00354B
2022;15(3):920.
106. Mamidi N, Leija HM, Diabb JM, et al. Cytotoxicity
evaluation of unfunctionalized multiwall carbon nanotubes- doi: 10.3390/ma15030920
ultrahigh molecular weight polyethylene nanocomposites. 117. Bai RG, Husseini GA. Graphene-based drug delivery
J Biomed Mater Res A. 2017;105(11):3042-3049. systems. In: Unnithan AR, Sasikala ARK, Park CH, Kim CS,
doi: 10.1002/jbm.a.36168 editors. Biomimetic Nanoengineered Materials for Advanced
Drug Delivery. Ch. 11. Netherlands: Elsevier; 2019.
107. Mamidi N. Cytotoxicity Evaluation of Carbon Nanotubes for p. 149-168.
Biomedical and Tissue Engineering Applications. London:
IntechOpen; 2019. doi: 10.1016/B978-0-12-814944-7.00011-4
doi: 10.5772/intechopen.85899 118. Peña-Bahamonde J, Nguyen HN, Fanourakis SK,
Rodrigues DF. Recent advances in graphene-based
108. Qian S, Yan Z, Xu Y, et al. Carbon nanotubes as biosensor technology with applications in life sciences.
electrophysiological building blocks for a bioactive cell J Nanobiotechnol. 2018;16(1):75.
scaffold through biological assembly to induce osteogenesis.
RSC Adv. 2019;9(21):12001-12009. doi: 10.1186/s12951-018-0400-z
doi: 10.1039/C9RA00370C 119. Mamidi N, Velasco Delgadillo RM, Barrera EV,
Ramakrishna S, Annabi N. Carbonaceous nanomaterials
109. Gupta P, Gupta VK, Huseinov A, Rahm CE, Gazica K, incorporated biomaterials: The present and future of the
Alvarez NT. Highly sensitive non-enzymatic glucose flourishing field. Compos B Eng. 2022;243:110150.
sensor based on carbon nanotube microelectrode set. Sens
Actuators B Chem. 2021;348:130688. doi: 10.1016/j.compositesb.2022.110150
doi: 10.1016/j.snb.2021.130688 120. Özcan M, Volpato CAM, Hian L, Karahan BD, Cesar PF.
Graphene for Zirconia and titanium composites in dental
110. Ajayan PM, Ebbesen TW. Nanometre-size tubes of carbon. implants: Significance and predictions. Curr Oral Health
Rep Progress Phys. 1997;60(10):1025. Rep. 2022;9(3):66-74.
doi: 10.1088/0034-4885/60/10/001 doi: 10.1007/s40496-022-00310-3
111. Shi Z, Lian Y, Zhou X, et al. Mass-production of single- 121. Shams SS, Zhang R. Graphene synthesis: A review. Mater Sci
wall carbon nanotubes by arc discharge method. Carbon. Poland. 2015;33:566-578.
1999;37:1449-1453.
doi: 10.1515/msp-2015-0079
doi: 10.1016/S0008-6223(99)00007-X
122. Xu S, Zhang L, Wang B, Ruoff RS. Chemical vapor
112. Chan KF, Maznam NAM, Hazan MA, et al. Multi-walled deposition of graphene on thin-metal films. Cell Rep Phys
carbon nanotubes growth by chemical vapour deposition: Sci. 2021;2(3):100372.
Effect of precursor flowing path and catalyst size. Carbon
Trends. 2022;6:100142. doi: 10.1016/j.xcrp.2021.100372
doi: 10.1016/j.cartre.2021.100142 123. Priyadarsini S, Mohanty S, Mukherjee S, Basu S,
Mishra M. Graphene and graphene oxide as nanomaterials
113. Ding EX, Liu P, Khan AT, et al. Towards the synthesis for medicine and biology application. J Nanostructure Chem.
of semiconducting single-walled carbon nanotubes by 2018;8(2):123-137.
floating-catalyst chemical vapor deposition: Challenges of
reproducibility. Carbon N Y. 2022;195:92-100. doi: 10.1007/s40097-018-0265-6
doi: 10.1016/j.carbon.2022.04.020 124. Gürünlü B, Taşdelen Yücedağ Ç, Bayramoğlu MR. Green
synthesis of graphene from graphite in molten salt medium.
114. Adeniran B, Mokaya R. Low temperature synthesized J Nanomater. 2020;2020:7029601.
carbon nanotube superstructures with superior CO 2
and hydrogen storage capacity. J Mater Chem A Mater. doi: 10.1155/2020/7029601
2015;3(9):5148-5161. 125. Bindumadhavan K, Srivastava S, Srivastava I. Green synthesis
doi: 10.1039/C4TA06539E of graphene. J Nanosci Nanotechnol. 2013;13:4320-4324.
115. Tripathi N, Pavelyev V, Islam SS. Synthesis of carbon doi: 10.1166/jnn.2013.7461
nanotubes using green plant extract as catalyst: 126. Meka Chufa B, Abdisa Gonfa B, Yohannes Anshebo T, Adam
Unconventional concept and its realization. Appl Nanosci. Workneh G. A novel and simplest green synthesis method of
2017;7(8):557-566.
reduced graphene oxide using methanol extracted Vernonia
doi: 10.1007/s13204-017-0598-3 amygdalina: Large-scale production. Adv Condens Matter
Volume 3 Issue 4 (2024) 17 doi: 10.36922/gtm.4698

