Page 62 - GTM-3-4
P. 62
Global Translational Medicine Eco-friendly biomedical materials: A review
antioxidant and antibacterial activity. ChemistrySelect. Proc. 2022;69:56-63.
2023;8(18):e202203658.
doi: 10.1016/j.matpr.2022.09.001
doi: 10.1002/slct.202203658
35. O’Gorman J, Humphreys H. Application of copper to
25. Barreto GP, Morales G, Quintanilla MLL. Microwave assisted prevent and control infection. Where are we now? J Hosp
synthesis of ZnO nanoparticles: Effect of precursor reagents, Infect. 2012;81(4):217-223.
temperature, irradiation time, and additives on Nano-ZnO
morphology development. J Mater. 2013;2013(1):478681. doi: 10.1016/j.jhin.2012.05.009
36. Ali M, Ijaz M, Ikram M, Ul-Hamid A, Avais M, Anjum AA.
doi: 10.1155/2013/478681
Biogenic synthesis, characterization and antibacterial
26. Streubel R, Barcikowski S, Gökce B. Continuous potential evaluation of copper oxide nanoparticles against
multigram nanoparticle synthesis by high-power, high- Escherichia coli. Nanoscale Res Lett. 2021;16(1):148.
repetition-rate ultrafast laser ablation in liquids. Opt Lett.
2016;41(7):1486-1489. doi: 10.1186/s11671-021-03605-z
doi: 10.1364/OL.41.001486 37. Usman M, Ahmed A, Yu B, Peng Q, Shen Y, Cong H.
Photocatalytic potential of bio-engineered copper
27. Ghiuță I, Cristea D, Croitoru C, et al. Characterization and nanoparticles synthesized from Ficus carica extract for the
antimicrobial activity of silver nanoparticles, biosynthesized degradation of toxic organic dye from waste water: Growth
using Bacillus species. Appl Surf Sci. 2018;438:66-73. mechanism and study of parameter affecting the degradation
doi: 10.1016/j.apsusc.2017.09.163 performance. Mater Res Bull. 2019;120:110583.
28. Rautela A, Rani J, Debnath (Das) M. Green synthesis of doi: 10.1016/j.materresbull.2019.110583
silver nanoparticles from Tectona grandis seeds extract: 38. Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK,
Characterization and mechanism of antimicrobial action on Chu CH. Application of copper nanoparticles in dentistry.
different microorganisms. J Anal Sci Technol. 2019;10(1):5. Nanomaterials (Basel). 2022;12(5):805.
doi: 10.1186/s40543-018-0163-z doi: 10.3390/nano12050805
29. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. 39. Van Hengel IAJ, Tierolf MWAM, Valerio VPM, et al.
Green synthesis of silver nanoparticles and characterization Self-defending additively manufactured bone implants
of their inhibitory effects on AGEs formation using bearing silver and copper nanoparticles. J Mater Chem B.
biophysical techniques. Sci Rep. 2016;6(1):20414. 2020;8(8):1589-1602.
doi: 10.1038/srep20414 doi: 10.1039/C9TB02434D
30. Seku K, Gangapuram BR, Pejjai B, Kadimpati KK, Golla N. 40. Sandoval C, Ríos G, Sepúlveda N, Salvo J,
Microwave-assisted synthesis of silver nanoparticles and Souza-Mello V, Farías J. Effectiveness of copper nanoparticles
their application in catalytic, antibacterial and antioxidant in wound healing process using in vivo and in vitro studies:
activities. J Nanostructure Chem. 2018;8(2):179-188. A systematic review. Pharmaceutics. 2022;14(9):1838.
doi: 10.1007/s40097-018-0264-7 doi: 10.3390/pharmaceutics14091838
31. Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles 41. Liu R, Zhan D, Wang D, et al. Surface plasmon resonance
have lethal and sublethal adverse effects on development effect of noble metal (Ag and Au) nanoparticles on BiVO4
and longevity by inducing ROS-mediated stress responses. for photoelectrochemical water splitting. Inorganics (Basel).
Sci Rep. 2018;8(1):2445.
2023;11(5):206.
doi: 10.1038/s41598-018-20728-z
doi: 10.3390/inorganics11050206
32. Moschini E, Colombo G, Chirico G, Capitani G, Dalle- 42. Betancourt-Galindo R, Reyes-Rodriguez PY, Puente-
Donne I, Mantecca P. Biological mechanism of cell oxidative Urbina BA, et al. Synthesis of copper nanoparticles by
stress and death during short-term exposure to nano CuO. thermal decomposition and their antimicrobial properties.
Sci Rep. 2023;13(1):2326.
J Nanomater. 2014;2014:980545.
doi: 10.1038/s41598-023-28958-6
doi: 10.1155/2014/980545
33. Niżnik Ł, Noga M, Kobylarz D, et al. Gold nanoparticles
(AuNPs)-toxicity, safety and green synthesis: A critical 43. Aguilar MS, Esparza R, Rosas G. Synthesis of Cu
review. Int J Mol Sci. 2024;25(7):4057. nanoparticles by chemical reduction method. Trans
Nonferrous Met Soc China. 2019;29(7):1510-1515.
doi: 10.3390/ijms25074057
doi: 10.1016/S1003-6326(19)65058-2
34. Nagar V, Singh T, Tiwari Y, et al. ZnO Nanoparticles:
Exposure, toxicity mechanism and assessment. Mater Today 44. Suri S, Ruan G, Winter J, Schmidt CE. Microparticles and
nanoparticles. In: Ratner BD, Hoffman AS, Schoen FJ,
Volume 3 Issue 4 (2024) 13 doi: 10.36922/gtm.4698

