Page 38 - GTM-4-2
P. 38

Global Translational Medicine                                       Small RNA therapy for pancreatic cancer



               Discov. 2019;18(6):421-446.                        Chem. 2019;30(2):366-383.
               doi: 10.1038/s41573-019-0017-4                     doi: 10.1021/acs.bioconjchem.8b00761
            98.  Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in   109. Mullard A. Antibody-oligonucleotide conjugates enter the
               drug delivery. J Am Chem Soc. 2016;138(3):704-717.  clinic. Nat Rev Drug Discov. 2022;21(1):6-8.
               doi: 10.1021/jacs.5b09974                          doi: 10.1038/d41573-021-00213-5
            99.  Dowdy SF. Overcoming cellular barriers for RNA   110. Varghese AM, Ang C, Dimaio CJ, Javle MM, O’Reilly
               therapeutics. Nat Biotechnol. 2017;35(3):222-229.  EMJJoCO. A  phase II study of siG12D-LODER in
               doi: 10.1038/nbt.3802                              combination with  chemotherapy  in patients  with locally
                                                                  advanced  pancreatic  cancer  (PROTACT).  J  Clin  Oncol.
            100. Kaczmarek JC, Kowalski PS, Anderson DG. Advances in   2020;38(15_Suppl):TPS4672.
               the delivery of RNA therapeutics: From concept to clinical
               reality. Genome Med. 2017;9(1):60.                 doi: 10.1200/JCO.2020.38.15_suppl.TPS4672
               doi: 10.1186/s13073-017-0450-0                  111. Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal
                                                                  and human phase Ia/Ib clinical data with CALAA-01, a
            101. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering   targeted, polymer-based nanoparticle containing  siRNA.
               the messenger: Advances in technologies for therapeutic   Proc Natl Acad Sci U S A. 2014;111(31):11449-11454.
               mRNA delivery. Mol Ther. 2019;27(4):710-728.
                                                                  doi: 10.1073/pnas.1411393111
               doi: 10.1016/j.ymthe.2019.02.012
                                                               112. Duurland CL, Gunst T, den Boer HC,  et al. INT-1B3, an
            102. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle   LNP formulated miR-193a-3p mimic, promotes anti-
               cellular uptake,  intracellular trafficking,  and kinetics in   tumor immunity by enhancing T cell mediated immune
               nanomedicine. Adv Drug Deliv Rev. 2019;143:68-96.  responses via modulation of the tumor microenvironment
               doi: 10.1016/j.addr.2019.04.008                    and induction  of immunogenic  cell  death.  Oncotarget.
                                                                  2024;15:470-485.
            103. Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles
               enabling gene therapies: From concepts to clinical utility.      doi: 10.18632/oncotarget.28608
               Nucleic Acid Ther. 2018;28(3):146-157.          113. Zhang Z, Zhang J, Diao L, Han L. Small non-coding
               doi: 10.1089/nat.2018.0721                         RNAs in human cancer: Function, clinical utility, and
                                                                  characterization. Oncogene. 2021;40(9):1570-1577.
            104.  Lorenzer C,  Dirin  M, Winkler AM, Baumann V, Winkler  J.
               Going beyond the liver: Progress and challenges of targeted      doi: 10.1038/s41388-020-01630-3
               delivery of siRNA therapeutics. J Control Release. 2015;203:1-15.  114. Weinstein JN, Collisson EA, Mills GB,  et al. The cancer
               doi: 10.1016/j.jconrel.2015.02.003                 genome atlas pan-cancer analysis project.  Nat Genet.
                                                                  2013;45(10):1113-1120.
            105. Huang X, Leroux JC, Castagner B. Well-defined multivalent
               ligands for hepatocytes targeting via asialoglycoprotein      doi: 10.1038/ng.2764
               receptor. Bioconju Chem. 2017;28(2):283-295.    115. Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation
               doi: 10.1021/acs.bioconjchem.6b00651               characterization of the cancer cell line encyclopedia. Nature.
                                                                  2019;569(7757):503-508.
            106. Wang J, Liao ZX. Research progress of microrobots in tumor
               drug delivery. Food Med Homology. 2024;1(2):9420025.     doi: 10.1038/s41586-019-1186-3
               doi: 10.26599/FMH.2024.9420025                  116. Dhawan A, Scott JG, Harris AL, Buffa FM. Pan-cancer
                                                                  characterisation  of  microRNA  across  cancer  hallmarks
            107. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J.
               Antibody-drug conjugates: A  comprehensive review.  Mol   reveals microRNA-mediated downregulation of tumour
               Cancer Res. 2020;18(1):3-19.                       suppressors. Nat Commun. 2018;9(1):5228.
                                                                  doi: 10.1038/s41467-018-07657-1
               doi: 10.1158/1541-7786.Mcr-19-0582
                                                               117. Ding L, Lan Z, Xiong X, et al. The dual role of MicroRNAs in
            108. Benizri S, Gissot A,  Martin A, Vialet B,  Grinstaff MW,
               Barthélémy P. Bioconjugated oligonucleotides: Recent   colorectal cancer progression. Int J Mol Sci. 2018;19(9):2791.
               developments and therapeutic  applications.  Bioconjug      doi: 10.3390/ijms19092791









            Volume 4 Issue 2 (2025)                         30                              doi: 10.36922/gtm.8247
   33   34   35   36   37   38   39   40   41   42   43