Page 102 - GTM-4-3
P. 102

Global Translational Medicine                          CNNs for overfitting and generalizability in fracture detection



               doi: 10.1371/journal.pdig.0000438                  doi: 10.1016/j.patter.2020.100129
            10.  Li H, Li J, Guan X, Liang B, Lai Y, Luo X. Research on   20.  Maleki F, Ovens K, Gupta R, Reinhold C, Spatz A,
               Overfitting of Deep Learning. In:  Proceedings of the   Forghani R. Generalizability of machine learning models:
               2019  15   International Conference on Computational   Quantitative evaluation of three methodological pitfalls.
                      th
               Intelligence and Security (CIS). IEEE; 2019. p. 78-81.  Radiol Artif Intell. 2023;5:e220028.
               doi: 10.1109/cis.2019.00025                        doi: 10.1148/ryai.220028
            11.  Zhang H, Zhang L,  Jiang Y. Overfitting and   21.  Salehinejad H, Kitamura J, Ditkofsky N, et al. A real-world
               Underfitting Analysis for Deep Learning Based End-  demonstration of machine learning generalizability in the
               to-end Communication Systems. In:  Proceedings of   detection of intracranial hemorrhage on head computerized
               the 2019  11   International Conference on Wireless   tomography. Sci Rep. 2021;11:17051.
                          th
               Communications and Signal Processing (WCSP). IEEE; 2019.
               p. 1-6.                                            doi: 10.1038/s41598-021-95533-2
                                                               22.  Zihni E, Madai VI, Livne M, et al. Opening the black box of
               doi: 10.1109/wcsp.2019.8927876
                                                                  artificial intelligence for clinical decision support: A study
            12.  Diogo P, Morais M, Calisto FM,  et al. Weakly-supervised   predicting stroke outcome. PLoS One. 2020;15:e0231166.
               diagnosis and detection of breast cancer using deep
               multiple instance learning. In: 2023 IEEE 20  International      doi: 10.1371/journal.pone.0231166
                                                th
               Symposium on Biomedical Imaging (ISBI). IEEE; 2023. p. 1-4.  23.  Yang G, Ye Q, Xia J. Unbox the black-box for the medical
               doi: 10.1109/isbi53787.2023.10230448.              explainable AI via multi-modal and multi-centre data
                                                                  fusion: A  mini-review, two showcases and beyond.  Inf
            13.  Thomas RL, Uminsky D. Reliance on metrics is a fundamental   Fusion. 2022;77:29-52.
               challenge for AI. Patterns (N Y). 2022;3:100476.
                                                                  doi: 10.1016/j.inffus.2021.07.016
               doi: 10.1016/j.patter.2022.100476
                                                               24.  Felder RM. Coming to terms with the black box problem:
            14.  Ektefaie Y, Shen A, Bykova D, Marin MG, Zitnik M,   How  to  justify  AI  systems  in  health  care.  Hastings  Cent
               Farhat M. Evaluating generalizability of artificial intelligence   Rep. 2021;51:38-45.
               models  for  molecular  datasets.  Nat Mach Intell.  2024;
               6:1512-1524.                                       doi: 10.1002/hast.1248
               doi: 10.1038/s42256-024-00931-6                 25.  Reyna MA, Nsoesie EO, Clifford GD. Rethinking algorithm
                                                                  performance metrics for artificial intelligence in diagnostic
            15.  Foody GM. Challenges in the real world use of classification   medicine. JAMA. 2022;328:329.
               accuracy metrics: From recall and precision to the Matthews
               correlation coefficient. PLoS One. 2023;18:e0291908.     doi: 10.1001/jama.2022.10561
               doi: 10.1371/journal.pone.0291908               26.  Chowdhury R. Bone Fracture Detection Using CNN; 2024.
                                                                  Available from: https://www.kaggle.com/code/27ituparna/
            16.  Husain G, Mayer J, Bekbolatova M, Vathappallil P, Matalia M,   bonefracture-cnn [Last accessed on 2025 Jan 11].
               Toma M. Machine learning for medical image classification.
               Acad Med. 2024;1(4):1-18.                       27.  Chaskar P. Bone Fracture Detection - 97% Accuracy CNN;
                                                                  2024. Available from: https://www.kaggle.com/code/
               doi: 10.20935/AcadMed7444                          prasadchaskar/bone-fracture-detection-97-accuracy-cnn
            17.  Buddhiraju A, Chen TLW, Subih MA, Seo HH,        [Last accessed on 2025 Jan 11].
               Esposito JG, Kwon YM. Validation and generalizability of   28.  Chaddad A, Hu Y, Wu Y, et al. Generalizable and explainable
               machine learning models for the prediction of discharge   deep learning for medical image computing: An overview.
               disposition following revision total knee arthroplasty.   Curr Opin Biomed Eng. 2025;33(3):100567.
               J Arthroplasty. 2023;38:S253-S258.
                                                                  doi: 10.1016/j.cobme.2024.100567
               doi: 10.1016/j.arth.2023.02.054
                                                               29.  U.S.  Food and Drug Administration. Considerations for
            18.  Sarker IH. Machine learning: Algorithms, real-world   the Use of Artificial Intelligence to Support Regulatory
               applications and research directions.  SN Comput Sci.   Decision-Making for Drug and Biological Products. Draft
               2021;2:160.                                        Guidance for Industry; 2025. Available from: https://www.
               doi: 10.1007/s42979-021-00592-x                    fda.gov/media/184830/download [Last accessed on 2025
                                                                  Mar 06].
            19.  Ho SY, Phua K, Wong L, Bin Goh WW. Extensions of
               the external validation for checking learned model   30.  Alam A, Al-Shamayleh AS, Thalji N, et al. Novel transfer
               interpretability and generalizability.  Patterns  (N  Y). 2020;   learning based bone fracture detection using radiographic
               1:100129.                                          images. BMC Med Imaging. 2025;25:5.


            Volume 4 Issue 3 (2025)                         94                              doi: 10.36922/gtm.8526
   97   98   99   100   101   102   103   104   105   106   107