Page 103 - GTM-4-3
P. 103
Global Translational Medicine CNNs for overfitting and generalizability in fracture detection
doi: 10.1186/s12880-024-01546-4 36. Calisto FM, Abrantes JM, Santiago C, et al. Personalized
explanations for clinician-AI interaction in breast imaging
31. Alwzwazy HA, Alzubaidi L, Zhao Z, Gu Y. FracNet: An end-
to-end deep learning framework for bone fracture detection. diagnosis by adapting communication to expertise levels. Int
Pattern Recogn Lett. 2025;190:1-7. J Hum Comput Stud. 2025;197(3):103444.
doi: 10.1016/j.ijhcs.2025.103444
doi: 10.1016/j.patrec.2025.01.034
37. Abrantes J. External validation of a deep learning model
32. Ahmed KD, Hawezi R. Detection of bone fracture based on
machine learning techniques. Measur Sens. 2023;27:100723. for breast density classification. In: Conference: European
Congress of Radiolog; 2023.
doi: 10.1016/j.measen.2023.100723
doi: 10.26044/ECR2023/C-16014
33. Abdusalomov A, Mirzakhalilov S, Umirzakova S, et al. 38. Jensen EB, Knapp A, King H, et al. Methodology for the 2020
Lightweight deep learning framework for accurate detection Demographic Analysis Estimates. U.S. Census Bureau; 2020.
of sports-related bone fractures. Diagnostics (Basel). Available from: https://www.census.gov [Last accessed on
2025;15:271.
2025 Mar 06].
doi: 10.3390/diagnostics15030271
39. Koçak B, Ponsiglione A, Stanzione A, et al. Bias in artificial
34. Thorat SR, Jha DG, Sharma AK, Katkar DV. Wrist fracture intelligence for medical imaging: Fundamentals, detection,
detection using self-supervised learning methodology. avoidance, mitigation, challenges, ethics, and prospects.
J Musculoskelet Surg Res. 2024;8(2):133-141. Diagn Interv Radiol. 2025;31(2).
doi: 10.25259/JMSR_260_2023 doi: 10.4274/dir.2024.242854
35. Chi P, Liang R, Hao C, Li G, Xin M. Cable fault diagnosis 40. Husain G, Nasef D, Jose R, et al. SMOTE vs. SMOTEENN:
with generalization capability using incremental learning A study on the performance of resampling algorithms for
and deep convolutional neural network. Electr Power Syst addressing class imbalance in regression models. Algorithms.
Res. 2025;241(4):111304. 2025;18(1):37.
doi: 10.1016/j.epsr.2024.111304. doi: 10.3390/a18010037
Volume 4 Issue 3 (2025) 95 doi: 10.36922/gtm.8526

