Page 103 - GTM-4-3
P. 103

Global Translational Medicine                          CNNs for overfitting and generalizability in fracture detection



               doi: 10.1186/s12880-024-01546-4                 36.  Calisto FM, Abrantes JM, Santiago C,  et al. Personalized
                                                                  explanations for clinician-AI interaction in breast imaging
            31.  Alwzwazy HA, Alzubaidi L, Zhao Z, Gu Y. FracNet: An end-
               to-end deep learning framework for bone fracture detection.   diagnosis by adapting communication to expertise levels. Int
               Pattern Recogn Lett. 2025;190:1-7.                 J Hum Comput Stud. 2025;197(3):103444.
                                                                  doi: 10.1016/j.ijhcs.2025.103444
               doi: 10.1016/j.patrec.2025.01.034
                                                               37.  Abrantes J. External validation of a deep learning model
            32.  Ahmed KD, Hawezi R. Detection of bone fracture based on
               machine learning techniques. Measur Sens. 2023;27:100723.  for breast density classification. In:  Conference: European
                                                                  Congress of Radiolog; 2023.
               doi: 10.1016/j.measen.2023.100723
                                                                  doi: 10.26044/ECR2023/C-16014
            33.  Abdusalomov A, Mirzakhalilov S, Umirzakova S,  et al.   38.  Jensen EB, Knapp A, King H, et al. Methodology for the 2020
               Lightweight deep learning framework for accurate detection   Demographic Analysis Estimates. U.S. Census Bureau; 2020.
               of sports-related bone fractures.  Diagnostics (Basel).   Available from: https://www.census.gov [Last accessed on
               2025;15:271.
                                                                  2025 Mar 06].
               doi: 10.3390/diagnostics15030271
                                                               39.  Koçak B, Ponsiglione A, Stanzione A, et al. Bias in artificial
            34.  Thorat SR, Jha DG, Sharma AK, Katkar DV. Wrist fracture   intelligence for medical imaging: Fundamentals, detection,
               detection using self-supervised learning methodology.   avoidance, mitigation, challenges, ethics, and prospects.
               J Musculoskelet Surg Res. 2024;8(2):133-141.       Diagn Interv Radiol. 2025;31(2).
               doi: 10.25259/JMSR_260_2023                        doi: 10.4274/dir.2024.242854
            35.  Chi P, Liang R, Hao C, Li G, Xin M. Cable fault diagnosis   40.  Husain G, Nasef D, Jose R, et al. SMOTE vs. SMOTEENN:
               with  generalization  capability  using  incremental  learning   A study on the performance of resampling algorithms for
               and deep convolutional neural network. Electr Power Syst   addressing class imbalance in regression models. Algorithms.
               Res. 2025;241(4):111304.                           2025;18(1):37.
               doi: 10.1016/j.epsr.2024.111304.                   doi: 10.3390/a18010037












































            Volume 4 Issue 3 (2025)                         95                              doi: 10.36922/gtm.8526
   98   99   100   101   102   103   104   105   106   107   108