Page 25 - IJAMD-1-2
P. 25

International Journal of AI for
            Materials and Design
                                                                                    Sustainable electronics using AI/ML


               of ready biodegradability based on combined public   learning models for predicting aerobic ready and inherent
               and industrial data sources.  SAR QSAR Environ Res.   biodegradation of organic chemicals in water. Environ Sci
               2020;31(3):171-186.                                Technol. 2022;56(17):12755-12764.
               doi: 10.1080/1062936X.2019.1697360                 doi: 10.1021/acs.est.2c01764
            79.  Czermiński R, Yasri A, Hartsough D. Use of support vector   89.  Lee M, Min KA. comparative study of the performance for
               machine  in  pattern  classification: Application  to  QSAR   predicting biodegradability classification: The quantitative
               studies. Quant Struct Act Relat. 2001;20(3):227-240.  structure-activity relationship model vs the  graph
               doi: 10.1002/1521-3838(200110)20:3<227:AID-QSAR227>   convolutional network. ACS Omega. 2022;7(4):3649-3655.
               3.0.CO;2-Y                                         doi: 10.1021/acsomega.1c06274
            80.  Davis CW, Camenzuli L, Redman AD. Predicting primary   90.  Cencer  MM,  Moore  JS,  Assary  RS.  Machine  learning
               biodegradation of petroleum hydrocarbons in aquatic   for polymeric materials: An introduction.  Polym Int.
               systems:  Integrating  system  and  molecular  structure   2022;71(5):537-542.
               parameters  using  a  novel  machine-learning  framework.
               Environ Toxicol Chem. 2022;41(6):1359-1369.        doi: 10.1002/pi.6345
                                                               91.  Lin A, Uva A, Babi J, Tran H. Materials design for resilience
               doi: 10.1002/etc.5328
                                                                  in the biointegration of electronics. MRS Bull. 2021;46:860-
            81.  Taunk K, De S, Verma S, Swetapadma A. A Brief Review of   869.
               Nearest Neighbor Algorithm for Learning and Classification.      doi: 10.1557/s43577-021-00174-5
               In: 2019 International Conference on Intelligent Computing
               and Control Systems (ICCS). IEEE; 2019. p. 1255-1260.  92.  Jorgensen RA. Plant science. A window on the sophistication
                                                                  of plants. Science. 2011;333(6046):1103-1104.
               doi: 10.1109/ICCS45141.2019.9065747
                                                                  doi: 10.1126/science.1211194
            82.  Zhang XM, Liang L, Liu L, Tang MJ. Graph neural networks
               and their current applications in bioinformatics.  Front   93.  Roth B, Savagatrup S, De Los Santos NV, et al. Mechanical
               Genet. 2021;12:690049.                             properties of a library of low-band-gap polymers.  Chem
                                                                  Mater. 2016;28(7):2363-2373.
               doi: 10.3389/fgene.2021.690049
                                                                  doi: 10.1021/acs.chemmater.6b00525
            83.  Frazier PI.  A Tutorial on Bayesian Optimization, Section
               5. 2018. p. 1-22. Available from: http://arxiv.org/  94.  Mei J, Bao Z. Side chain engineering in solution-processable
               abs/1807.02811 [Last accessed on 2024 Jul 02].     conjugated polymers. Chem Mater. 2014;26(11):604-615.
            84.  De Carvalho Rocha WF, Sheen DA. Classification      doi: 10.1021/cm4020805
               of biodegradable materials using QSAR modeling   95.  Abetz V, Simon PFW. Phase behaviour and morphologies of
               with uncertainty estimation.  SAR QSAR Environ Res.   block copolymers. In: Advances in Polymer Science. Berlin:
               2016;27(10):799-811.
                                                                  Springer; 2005. p. 125-212.
               doi: 10.1080/1062936X.2016.1238010
                                                                  doi: 10.1007/12_004
            85.  Nolte TM, Peijnenburg WJGM, van Bergen TJHM,   96.  Sidky H, Chen W, Ferguson AL. Molecular latent space
               Hendriks   AJ. Transition-state rate theory sheds light on
               “Black-Box”  biodegradation  algorithms.  Green Chem.   simulators. Chem Sci. 2020;11(35):9459-9467.
               2020;22(11):3558-3571.                             doi: 10.1039/d0sc03635h
               doi: 10.1039/D0GC00337A                         97.  Gu Y, Zhao J, Johnson JA. A  (Macro)molecular-level
                                                                  understanding of polymer network topology. Trends Chem.
            86.  McDonald SM, Augustine EK, Lanners Q, Rudin C,   2019;1(3):318-334.
               Catherine Brinson L, Becker ML. Applied machine learning
               as a driver for polymeric biomaterials design. Nat Commun.      doi: 10.1016/j.trechm.2019.02.017
               2023;14(1):4838.
                                                               98.  Rubinstein M. Polymer physics-the ugly duckling story: Will
               doi: 10.1038/s41467-023-40459-8                    polymer physics ever become a part of “Proper” physics? J
                                                                  Polym Sci B Polym Phys. 2010;48:2548-2551.
            87.  Jaworska JS, Boethling RS, Howard PH. Recent developments
               in   broadly  applicable  structure-biodegradability     doi: 10.1002/polb.22135
               relationships. Environ Toxicol Chem. 2003;22(8):1710-1723.
                                                               99.  Göpferich A.  Mechanisms  of  Polymer  Degradation  and
               doi: 10.1897/01-302                                Erosion. Vol. 17. Amsterdam: Elsevier; 1996.
            88.  Huang K, Zhang H. Classification and regression machine      doi: 10.1016/B978-008045154-1.50016-2




            Volume 1 Issue 2 (2024)                         19                             doi: 10.36922/ijamd.3173
   20   21   22   23   24   25   26   27   28   29   30