Page 22 - IJAMD-1-2
P. 22

International Journal of AI for
            Materials and Design
                                                                                    Sustainable electronics using AI/ML


               doi: 10.3390/s22083062                             doi: 10.1002/smll.201300146
            13.  Cha GD, Kang D, Lee J, Kim D. Bioresorbable electronic   24.  Kang SK, Park G, Kim K,  et al. Dissolution chemistry
               implants: History, materials, fabrication, devices, and clinical   and biocompatibility of silicon-  and germanium-based
               applications. Adv Healthc Mater. 2019;8(11):e1801660.  semiconductors for transient electronics. ACS Appl Mater
                                                                  Interfaces. 2015;7(17):9297-9305.
               doi: 10.1002/adhm.201801660
                                                                  doi: 10.1021/acsami.5b02526
            14.  Jeong H, Baek S, Han S, Jang H, Kim SH, Lee HS. Novel
               eco-friendly starch paper for use in flexible, transparent,   25.  Hwang SW, Park G, Cheng H,  et al. 25   anniversary
                                                                                                   th
               and disposable organic electronics.  Adv Funct Mater.   article: Materials for high-performance biodegradable
               2018;28(3):1704433.                                semiconductor devices. Adv Mater. 2014;26(13):1992-2000.
               doi: 10.1002/adfm.201704433                        doi: 10.1002/adma.201304821
            15.  Luo Q, Hossen MA, Zeng Y, et al. Gelatin-based composite   26.  Yin L, Farimani AB, Min K, et al. Mechanisms for hydrolysis
               films and their application in food packaging: A  review.   of silicon nanomembranes as used in bioresorbable
               J Food Eng. 2022;313:110762.                       electronics. Adv Mater. 2015;27(11):1857-1864.
               doi: 10.1016/j.jfoodeng.2021.110762                doi: 10.1002/adma.201404579
            16.  Hwang SW, Song JK, Huang X,  et al. High-Performance   27.  Hwang SW, Park G, Edwards C,  et al. Dissolution
               biodegradable/transient  electronics  on  biodegradable   chemistry and biocompatibility of single-crystalline silicon
               polymers. Adv Mater. 2014;26(23):3905-3911.        nanomembranes  and  associated  materials  for  transient
                                                                  electronics. ACS Nano. 2014;8(6):5843-5851.
               doi: 10.1002/adma.201306050
                                                                  doi: 10.1021/nn500847g
            17.  Chatterjee S, Saxena M, Padmanabhan D, Jayachandra M,
               Pandya HJ. Futuristic medical implants using bioresorbable   28.  Lee YK, Yu KJ, Song E, et al. Dissolution of monocrystalline
               materials and devices. Biosens Bioelectron. 2019;142:111489.  silicon nanomembranes and their use as encapsulation
                                                                  layers and electrical interfaces in water-soluble electronics.
               doi: 10.1016/j.bios.2019.111489
                                                                  ACS Nano. 2017;11(12):12562-12572.
            18.  Phan HP. Implanted flexible electronics: Set device
               lifetime with smart nanomaterials. Micromachines (Basel).      doi: 10.1021/acsnano.7b06697
               2021;12(2):157.                                 29.  Devabharathi N, Mondal SK, Dasgupta S. Inkjet-printed
                                                                  co-continuous mesoporous oxides for high-current power
               doi: 10.3390/mi12020157
                                                                  transistors. Nanoscale. 2019;11(29):13731-13740.
            19.  Samantaray PK, Little A, Haddleton DM, et al. Poly(Glycolic
               Acid) (PGA): A  versatile building block expanding high      doi: 10.1039/c9nr04876f
               performance and sustainable bioplastic applications. Green   30.  Devabharathi  N,  Parasuraman  R,  Umarji  AM,
               Chem. 2020;22(13):4055-4081.                       Dasgupta S. Ultra-high response ethanol sensors from fully-
                                                                  printed co-continuous and mesoporous tin oxide thin films.
               doi: 10.1039/d0gc01394c
                                                                  J Alloys Compd. 2021;865:158815.
            20.  Wang G, Huang D, Ji J, Völker C, Wurm FR. Seawater-
               degradable polymers-fighting the marine plastic pollution.      doi: 10.1016/j.jallcom.2021.158815
               Adv Sci (Weinh). 2021;8(1):2001121.             31.  Miyauchi M, Li Y, Shimizu H. Enhanced degradation
                                                                  in nanocomposites of TiO  and biodegradable polymer.
               doi: 10.1002/advs.202001121                                             2
                                                                  Environ Sci Technol. 2008;42(12):4551-4554.
            21.  Acar H, Çinar S, Thunga M, Kessler MR, Hashemi N,
               Montazami R.  Study of physically transient  insulating      doi: 10.1021/es800097n
               materials as a potential platform for transient electronics and   32.  Feig VR, Tran H, Bao Z. Biodegradable polymeric
               bioelectronics. Adv Funct Mater. 2014;24(26):4135-4143.  materials in degradable electronic devices.  ACS Cent Sci.
                                                                  2018;4(3):337-348.
               doi: 10.1002/adfm.201304186
                                                                  doi: 10.1021/acscentsci.7b00595
            22.  Sander M, Weber M, Lott C, Zumstein M, Künkel A,
               Battagliarin G.  Polymer Biodegradability 2.0: A  Holistic   33.  Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z. A novel
               View on Polymer Biodegradation in Natural and Engineered   electrically conductive and biodegradable composite made
               Environments. Cham: Springer; 2023. p. 65-110.     of polypyrrole nanoparticles and polylactide. Biomaterials.
                                                                  2004;25(13):2477-2488.
               doi: 10.1007/12_2023_163
                                                                  doi: 10.1016/j.biomaterials.2003.09.032
            23.  Dagdeviren  C,  Hwang  SW,  Su  Y,  et al.  Transient,
               biocompatible electronics and energy harvesters based on   34.  Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-
               ZnO. Small. 2013;9(20):3398-3404.                  coated electrospun PLGA nanofibers for neural tissue


            Volume 1 Issue 2 (2024)                         16                             doi: 10.36922/ijamd.3173
   17   18   19   20   21   22   23   24   25   26   27