Page 22 - IJAMD-1-2
P. 22
International Journal of AI for
Materials and Design
Sustainable electronics using AI/ML
doi: 10.3390/s22083062 doi: 10.1002/smll.201300146
13. Cha GD, Kang D, Lee J, Kim D. Bioresorbable electronic 24. Kang SK, Park G, Kim K, et al. Dissolution chemistry
implants: History, materials, fabrication, devices, and clinical and biocompatibility of silicon- and germanium-based
applications. Adv Healthc Mater. 2019;8(11):e1801660. semiconductors for transient electronics. ACS Appl Mater
Interfaces. 2015;7(17):9297-9305.
doi: 10.1002/adhm.201801660
doi: 10.1021/acsami.5b02526
14. Jeong H, Baek S, Han S, Jang H, Kim SH, Lee HS. Novel
eco-friendly starch paper for use in flexible, transparent, 25. Hwang SW, Park G, Cheng H, et al. 25 anniversary
th
and disposable organic electronics. Adv Funct Mater. article: Materials for high-performance biodegradable
2018;28(3):1704433. semiconductor devices. Adv Mater. 2014;26(13):1992-2000.
doi: 10.1002/adfm.201704433 doi: 10.1002/adma.201304821
15. Luo Q, Hossen MA, Zeng Y, et al. Gelatin-based composite 26. Yin L, Farimani AB, Min K, et al. Mechanisms for hydrolysis
films and their application in food packaging: A review. of silicon nanomembranes as used in bioresorbable
J Food Eng. 2022;313:110762. electronics. Adv Mater. 2015;27(11):1857-1864.
doi: 10.1016/j.jfoodeng.2021.110762 doi: 10.1002/adma.201404579
16. Hwang SW, Song JK, Huang X, et al. High-Performance 27. Hwang SW, Park G, Edwards C, et al. Dissolution
biodegradable/transient electronics on biodegradable chemistry and biocompatibility of single-crystalline silicon
polymers. Adv Mater. 2014;26(23):3905-3911. nanomembranes and associated materials for transient
electronics. ACS Nano. 2014;8(6):5843-5851.
doi: 10.1002/adma.201306050
doi: 10.1021/nn500847g
17. Chatterjee S, Saxena M, Padmanabhan D, Jayachandra M,
Pandya HJ. Futuristic medical implants using bioresorbable 28. Lee YK, Yu KJ, Song E, et al. Dissolution of monocrystalline
materials and devices. Biosens Bioelectron. 2019;142:111489. silicon nanomembranes and their use as encapsulation
layers and electrical interfaces in water-soluble electronics.
doi: 10.1016/j.bios.2019.111489
ACS Nano. 2017;11(12):12562-12572.
18. Phan HP. Implanted flexible electronics: Set device
lifetime with smart nanomaterials. Micromachines (Basel). doi: 10.1021/acsnano.7b06697
2021;12(2):157. 29. Devabharathi N, Mondal SK, Dasgupta S. Inkjet-printed
co-continuous mesoporous oxides for high-current power
doi: 10.3390/mi12020157
transistors. Nanoscale. 2019;11(29):13731-13740.
19. Samantaray PK, Little A, Haddleton DM, et al. Poly(Glycolic
Acid) (PGA): A versatile building block expanding high doi: 10.1039/c9nr04876f
performance and sustainable bioplastic applications. Green 30. Devabharathi N, Parasuraman R, Umarji AM,
Chem. 2020;22(13):4055-4081. Dasgupta S. Ultra-high response ethanol sensors from fully-
printed co-continuous and mesoporous tin oxide thin films.
doi: 10.1039/d0gc01394c
J Alloys Compd. 2021;865:158815.
20. Wang G, Huang D, Ji J, Völker C, Wurm FR. Seawater-
degradable polymers-fighting the marine plastic pollution. doi: 10.1016/j.jallcom.2021.158815
Adv Sci (Weinh). 2021;8(1):2001121. 31. Miyauchi M, Li Y, Shimizu H. Enhanced degradation
in nanocomposites of TiO and biodegradable polymer.
doi: 10.1002/advs.202001121 2
Environ Sci Technol. 2008;42(12):4551-4554.
21. Acar H, Çinar S, Thunga M, Kessler MR, Hashemi N,
Montazami R. Study of physically transient insulating doi: 10.1021/es800097n
materials as a potential platform for transient electronics and 32. Feig VR, Tran H, Bao Z. Biodegradable polymeric
bioelectronics. Adv Funct Mater. 2014;24(26):4135-4143. materials in degradable electronic devices. ACS Cent Sci.
2018;4(3):337-348.
doi: 10.1002/adfm.201304186
doi: 10.1021/acscentsci.7b00595
22. Sander M, Weber M, Lott C, Zumstein M, Künkel A,
Battagliarin G. Polymer Biodegradability 2.0: A Holistic 33. Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z. A novel
View on Polymer Biodegradation in Natural and Engineered electrically conductive and biodegradable composite made
Environments. Cham: Springer; 2023. p. 65-110. of polypyrrole nanoparticles and polylactide. Biomaterials.
2004;25(13):2477-2488.
doi: 10.1007/12_2023_163
doi: 10.1016/j.biomaterials.2003.09.032
23. Dagdeviren C, Hwang SW, Su Y, et al. Transient,
biocompatible electronics and energy harvesters based on 34. Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-
ZnO. Small. 2013;9(20):3398-3404. coated electrospun PLGA nanofibers for neural tissue
Volume 1 Issue 2 (2024) 16 doi: 10.36922/ijamd.3173

