Page 26 - IJAMD-1-2
P. 26

International Journal of AI for
            Materials and Design
                                                                                    Sustainable electronics using AI/ML


            100.  Wang R, Lin TS, Johnson JA, Olsen BD. Kinetic Monte   Artificial intelligence in chemistry: Current trends and
                 Carlo simulation for quantification of the gel point of   future directions. J Chem Inf Model. 2021;36(9):3197-3212.
                 polymer networks. ACS Macro Lett. 2017;6(12):1414-1419.
                                                                    doi: 10.1021/acs.jcim.1c00619
                 doi: 10.1021/acsmacrolett.7b00586
                                                               109.  Kamkar M, Leonard KC, Ferrer I, et al. Artificial intelligence
            101.  Zhong M, Wang R, Kawamoto K, Olsen BD, Johnson JA.   (AI) for sustainable resource management and chemical
                 Quantifying the impact of molecular defects on polymer   processes. ACS Sustain Chem Eng. 2024;12(8):2924-2926.
                 network elasticity. Science. 2016;353(6305):1264-1268.
                                                                    doi: 10.1021/acssuschemeng.4c01004
                 doi: 10.1126/science.aag0184
                                                               110.  Kostal J. Making the case for quantum mechanics in
            102.  Vieira AC, Marques AT, Guedes RM, Tita V. Material   predictive toxicology-nearly 100 years too late? Chem Res
                 model proposal for biodegradable materials. Procedia Eng.   Toxicol. 2023;36(9):1444-1450.
                 2011;10:1597-1602.
                                                                    doi: 10.1021/acs.chemrestox.3c00171
                 doi: 10.1016/j.proeng.2011.04.267
                                                               111.  For chemists, the AI revolution has yet to happen. Nature.
            103.  Jiang S, Liang Y, Shi S, Wu C, Shi Z. Improving predictions   2023;617(7961):438.
                 and understanding of primary and ultimate biodegradation      doi: 10.1038/d41586-023-01612-x
                 rates with machine learning models.  Sci Total Environ.
                 2023;904:166623.                              112.  Open Data and AI: A Symbiotic Relationship for Progress.
                                                                    Available from: https://data.europa.eu/en/publications/
                 doi: 10.1016/j.scitotenv.2023.166623
                                                                    datastories/open-data-and-ai-symbiotic-relationship-
            104.  Wang HSH, Yao Y. Machine learning for sustainable   progress [Last accessed on 2024 Mar 07].
                 development and applications of biomass and biomass-  113.  Gormley AJ, Webb MA. Machine learning in combinatorial
                 derived carbonaceous materials in water and agricultural   polymer chemistry. Nat Rev Mater. 2021;6(8):642-644.
                 systems: A review. Resour Conserv Recycl. 2023;190:106847.
                                                                    doi: 10.1038/s41578-021-00282-3
                 doi: 10.1016/j.resconrec.2022.106847
                                                               114.  Hong S, Liow CH, Yuk JM, et al. Reducing time to discovery:
            105.  Albright VC, Chai Y. Knowledge gaps in polymer biodegradation   Materials and molecular modeling, imaging, informatics,
                 research. Environ Sci Technol. 2021;55:11476-11488.
                                                                    and integration. ACS Nano. 2021;15(3):3971-3995.
                 doi: 10.1021/acs.est.1c00994
                                                                    doi: 10.1021/acsnano.1c00211
            106.  Wilson AN, St John PC, Marin DH, et al. PolyID: Artificial   115.  Chen G, Shen Z, Iyer A, et al. Machine-learning-assisted de
                 intelligence for discovering performance-advantaged and   novo design of organic molecules and polymers: Opportunities
                 sustainable polymers. Macromolecules. 2023;56(21):8547-8557.
                                                                    and challenges. Polymers (Basel). 2020;12(1):163.
                 doi: 10.1021/acs.macromol.3c00994
                                                                    doi: 10.3390/polym12010163
            107.  Roch LM, Häse F, Kreisbeck C,  et al. ChemOS:   116.  Goh GD, Lee JM, Goh GL, Huang X, Lee S, Yeong WY.
                 Orchestrating autonomous experimentation.  Sci Robot.   Machine learning for bioelectronics on wearable and
                 2018;3(19):eaat5559.
                                                                    implantable devices: Challenges and potential. Tissue Eng
                 doi: 10.1126/scirobotics.aat5559                   Part A. 2023;29(1-2):20-46.
            108.  Baum ZJ, Yu X, Ayala PY, Zhao Y, Watkins SP, Zhou Q.      doi: 10.1089/ten.tea.2022.0119
























            Volume 1 Issue 2 (2024)                         20                             doi: 10.36922/ijamd.3173
   21   22   23   24   25   26   27   28   29   30   31