Page 24 - IJAMD-1-2
P. 24

International Journal of AI for
            Materials and Design
                                                                                    Sustainable electronics using AI/ML


               doi: 10.1039/c6tc00678g                         66.  Hemstreet JM. Dielectric constant of cotton. J  Electrostat.
                                                                  1982;13:345-353.
            57.  Rullyani C, Sung CF, Lin HC, Chu CW. Flexible organic
               thin film transistors incorporating a biodegradable CO -     doi: 10.1016/0304-3886(82)90052-3
                                                         2
               based polymer as the substrate and dielectric material. Sci   67.  Jayamani E, Hamdan S, Rahman MR, Bin Bakri MK.
               Rep. 2018;8(1):8146.
                                                                  Comparative study of dielectric properties of hybrid natural
               doi: 10.1038/s41598-018-26585-0                    fiber composites. Procedia Eng. 2014;97:536-544.
            58.  Wang X, Ochiai S, Sawa G,  et al. Organic field-effect      doi: 10.1016/j.proeng.2014.12.280
               transistors with crosslinkable polyvinyl alcohol insulator and   68.  Nawaz A, Liu  Q, Leong WL,  Fairfull-Smith KE,  Sonar  P.
               spin-coated/drop-cast poly (3-Hexylthiophene-2,5-Diyl)   Organic electrochemical transistors for in vivo bioelectronics.
               semiconductor. Jpn J Appl Phys. 2007;46(3B):1337-1342.  Adv Mater. 2021;33(49):2170387.
               doi: 10.1143/JJAP.46.1337                          doi: 10.1002/adma.202170387
            59.  Benvenho ARV, Machado WS, Cruz-Cruz I, Hümmelgen IA.   69.  Tarabella G, Mahvash Mohammadi F, Coppedè N, et al. New
               Study of poly(3-Hexylthiophene)/cross-linked poly(Vinyl   opportunities  for  organic  electronics  and  bioelectronics:
               Alcohol) as semiconductor/insulator for application in   Ions in action. Chem Sci. 2013;4(4):1395-1409.
               low  voltage  organic  field  effect  transistors.  J  Appl Phys.
               2013;113(21):214509.                               doi: 10.1039/c2sc21740f
               doi: 10.1063/1.4809285                          70.  Huang J, Gao Y, Chang Y, Peng J, Yu Y, Wang B. Machine
                                                                  learning in bioelectrocatalysis.  Adv Sci  (Weinh).
            60.  Feng L, Tang W, Zhao J, Cui Q, Jiang C, Guo X. All-  2024;11(2):e2306583.
               solution-processed low-voltage organic thin-film transistor
               inverter on plastic substrate. IEEE Trans Electron Devices.      doi: 10.1002/advs.202306583
               2014;61(4):1175-1180.                           71.  Gu GH, Noh J, Kim I, Jung Y. Machine learning for renewable
               doi: 10.1109/TED.2014.2303992                      energy materials. J Mater Chem A. 2019;7(29):17096-17117.
                                                                  doi: 10.1039/C9TA02356A
            61.  Nawaz A, Cruz-Cruz I, Rodrigues R, Hümmelgen IA.
               Performance enhancement of poly(3-Hexylthiophene-  72.  Ahmed  M,  Seraj  R,  Islam  SMS. The  K-means algorithm:
               2,5-Diyl) based field effect transistors through surfactant   A  comprehensive survey and performance evaluation.
               treatment of the poly(Vinyl Alcohol) gate insulator surface.   Electronics (Basel). 2020;9(8):1295.
               Phys Chem Chem Phys. 2014;17(40):26530-26534.      doi: 10.3390/electronics9081295
               doi: 10.1039/c4cp02245a
                                                               73.  Chen A, Zhang X, Zhou Z. Machine learning: Accelerating
            62.  Jastrombek D, Nawaz A, Koehler M, Meruvia MS,    materials development for energy storage and conversion.
               Hümmelgen IA. Modification of the charge transport   InfoMat. 2020;2(3):553-576.
               properties of the copper phthalocyanine/poly(Vinyl      doi: 10.1002/inf2.12094
               Alcohol) interface using cationic or anionic surfactant for
               field-effect transistor performance enhancement. J Phys D   74.  Zhang W, Huang W, Tan J, Guo Q, Wu B. Heterogeneous
               Appl Phys. 2015;48(33):335104.                     catalysis mediated by light, electricity and enzyme via
                                                                  machine learning: Paradigms, applications and prospects.
               doi: 10.1088/0022-3727/48/33/335104                Chemosphere. 2022;308:136447.
            63.  Irimia-Vladu M, Głowacki ED, Voss G, Bauer S,      doi: 10.1016/j.chemosphere.2022.136447
               Sariciftci NS. Green and biodegradable electronics.  Mater
               Today. 2012;15:340-346.                         75.  Cheng F, Ikenaga Y, Zhou Y, et al. In silico assessment of chemical
                                                                  biodegradability. J Chem Inf Model. 2012;52(3):655-669.
               doi: 10.1016/S1369-7021(12)70139-6
                                                                  doi: 10.1021/ci200622d
            64.  Kim DH, Viventi J, Amsden JJ, et al. Dissolvable films of silk
               fibroin for ultrathin conformal bio-integrated electronics.   76.  Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification
               Nat Mater. 2010;9(6):511-517.                      and Regression Trees. United Kingdom: Routledge; 2017.
               doi: 10.1038/nmat2745                              doi: 10.1201/9781315139470
                                                               77.  Elsayad  AM,  Zeghid  M,  Ahmed  HY,  Elsayad  KA.
            65.  Ko J, Nguyen LTH, Surendran A, Tan BY, Ng KW,
               Leong WL. Human hair keratin for biocompatible flexible   Exploration of biodegradable substances using machine
               and transient electronic devices. ACS Appl Mater Interfaces.   learning techniques. Sustainability. 2023;15(17):12764.
               2017;9(49):43004-43012.                            doi: 10.3390/su151712764
               doi: 10.1021/acsami.7b16330                     78.  Lunghini F, Marcou G, Gantzer P,  et al. Modelling


            Volume 1 Issue 2 (2024)                         18                             doi: 10.36922/ijamd.3173
   19   20   21   22   23   24   25   26   27   28   29