Page 45 - IJAMD-1-2
P. 45

International Journal of AI for
            Materials and Design
                                                                                      AI-driven quality assurance in AM


            16.  Stavropoulos P, Souflas T, Papaioannou C, Bikas H,   26.  Yenugula M, Goswami SS, Kaliappan S, et al. Analyzing the
               Mourtzis D. An adaptive, artificial intelligence-based chatter   critical parameters for implementing sustainable AI cloud
               detection method for milling operations. Int J Adv Manuf   system in an IT industry using AHP-ISM-MICMAC integrated
               Technol. 2023;124(7):2037-2058.                    hybrid MCDM model. Mathematics. 2023;11(15):3367.
               doi: 10.1007/s00170-022-09920-8                    doi: 10.3390/math11153367
            17.  Stavropoulos P, Foteinopoulos P, Papapacharalampopoulos A.   27.  Rahman MA, Saleh T, Jahan MP, et al. Review of intelligence
               On the impact of additive manufacturing processes   for additive and subtractive manufacturing: Current status
               complexity on modelling. Appl Sci. 2021;11(16):7743.  and future prospects. Micromach. 2023;14(3):508.
               doi: 10.3390/app11167743                           doi: 10.3390/mi14030508
            18.  Talaat FM, Hassan E. Artificial intelligence in 3D printing.   28.  Alshahrani R, Yenugula M, Algethami H, et al. Establishing
               In: Hassanien AE, Darwish A, El-Kader SM, Alboaneen DA,   the fuzzy integrated hybrid MCDM framework to identify
               editors.  Enabling Machine Learning Applications in Data   the key barriers to implementing artificial intelligence-
               Science.  Algorithms for Intelligent Systems. Singapore:   enabled sustainable cloud system in an IT industry. Exp Syst
               Springer; 2021.                                    Appl. 2024;238:121732.
               doi: 10.1007/978-981-33-6129-4_6                   doi: 10.1016/j.eswa.2023.121732
            19.  Rojek I, Mikołajewski D, Dostatni E, Macko M. AI-optimized   29.  Jan Z, Ahamed F, Mayer W, et al. Artificial intelligence for
               technological aspects of the material used in 3D printing   industry 4.0: Systematic review of applications, challenges,
               processes  for  selected  medical  applications.  Materials.   and opportunities. Exp Syst Appl. 2023;216:119456.
               2020;13(23):5437.
                                                                  doi: 10.1016/j.eswa.2022.119456
               doi: 10.3390/ma13235437
                                                               30.  Sahoo SK, Das AK, Samanta S, Goswami SS. Assessing
            20.  Kantaros  A,  Ganetsos  T.  From static  to dynamic:  Smart   the role of sustainable development in mitigating the
               materials pioneering additive manufacturing in regenerative   issue of global warming.  J  Process Manag New Technol.
               medicine. Int J Mol Sci. 2023;24(21):15748.        2023;11(1-2):1-21.
               doi: 10.3390/ijms242115748                         doi: 10.5937/jpmnt11-44122
            21.  Kantaros A,  Petrescu FI, Abdoli  H,  et al. Additive   31.  Castañé G, Dolgui A, Kousi N, et al. The assistant project:
               manufacturing for surgical planning and education:   AI for high level decisions in manufacturing. Int J Prod Res.
               A review. Appl Sci. 2024;14(6):2550.               2023;61(7):2288-2306.
               doi: 10.3390/app14062550                           doi: 10.1080/00207543.2022.2069525
            22.  Kantaros A, Piromalis D, Tsaramirsis G, Papageorgas P,   32.  Wang K, Ying Z, Goswami SS, Yin Y, Zhao Y. Investigating
               Tamimi H. 3D printing and implementation of digital twins:   the role of artificial intelligence technologies in the
               Current trends and limitations. Appl Syst Innov. 2021;5(1):7.  construction industry using a Delphi-ANP-TOPSIS hybrid
                                                                  MCDM concept under a fuzzy environment. Sustainability.
               doi: 10.3390/asi5010007
                                                                  2023;15(15):11848.
            23.  Hunde  BR,  Woldeyohannes  AD. Future  prospects  of
               computer-aided design (CAD)-A review from the      doi: 10.3390/su151511848
               perspective  of artificial intelligence (AI), extended reality,   33.  Mittal U, Yang H, Bukkapatnam ST, Barajas LG. Dynamics
               and 3D printing. Results Eng. 2022;14:100478.      and Performance Modeling of Multi-stage Manufacturing
                                                                  Systems Using Nonlinear Stochastic Differential Equations.
               doi: 10.1016/j.rineng.2022.100478
                                                                  IEEE International Conference on Automation Science and
            24.  Zhu  Z,  Ng DW,  Park  HS,  McAlpine  MC.  3D-printed   Engineering. 2008. p. 498-503.
               multifunctional materials enabled by artificial-intelligence-
               assisted fabrication technologies.  Nat Rev Mater.      doi: 10.1109/COASE.2008.4626530
               2021;6(1):27-47.                                34.  Wei AT, Wang H, Dickens T, Chi H. Co-learning of extrusion
                                                                  deposition quality for supporting interconnected additive
               doi: 10.1038/s41578-020-00235-2
                                                                  manufacturing systems. IISE Transac. 2023;55(4):405-418.
            25.  Caiazzo B, Murino T, Petrillo A, Piccirillo G, Santini S.
               An IoT-based and cloud-assisted AI-driven monitoring      doi: 10.1080/24725854.2022.2080306
               platform for smart manufacturing: Design architecture   35.  Mittal U, Panchal D. AI-based evaluation system for supply
               and experimental validation.  J  Manuf  Technol  Manag.   chain vulnerabilities and resilience amidst external shocks:
               2023;34(4):507-534.                                An empirical approach. Rep Mech Eng. 2023;4(1):276-289.
               doi: 10.1108/JMTM-02-2022-0092                     doi: 10.31181/rme040122112023m


            Volume 1 Issue 2 (2024)                         39                             doi: 10.36922/ijamd.3455
   40   41   42   43   44   45   46   47   48   49   50