Page 45 - IJAMD-1-2
P. 45
International Journal of AI for
Materials and Design
AI-driven quality assurance in AM
16. Stavropoulos P, Souflas T, Papaioannou C, Bikas H, 26. Yenugula M, Goswami SS, Kaliappan S, et al. Analyzing the
Mourtzis D. An adaptive, artificial intelligence-based chatter critical parameters for implementing sustainable AI cloud
detection method for milling operations. Int J Adv Manuf system in an IT industry using AHP-ISM-MICMAC integrated
Technol. 2023;124(7):2037-2058. hybrid MCDM model. Mathematics. 2023;11(15):3367.
doi: 10.1007/s00170-022-09920-8 doi: 10.3390/math11153367
17. Stavropoulos P, Foteinopoulos P, Papapacharalampopoulos A. 27. Rahman MA, Saleh T, Jahan MP, et al. Review of intelligence
On the impact of additive manufacturing processes for additive and subtractive manufacturing: Current status
complexity on modelling. Appl Sci. 2021;11(16):7743. and future prospects. Micromach. 2023;14(3):508.
doi: 10.3390/app11167743 doi: 10.3390/mi14030508
18. Talaat FM, Hassan E. Artificial intelligence in 3D printing. 28. Alshahrani R, Yenugula M, Algethami H, et al. Establishing
In: Hassanien AE, Darwish A, El-Kader SM, Alboaneen DA, the fuzzy integrated hybrid MCDM framework to identify
editors. Enabling Machine Learning Applications in Data the key barriers to implementing artificial intelligence-
Science. Algorithms for Intelligent Systems. Singapore: enabled sustainable cloud system in an IT industry. Exp Syst
Springer; 2021. Appl. 2024;238:121732.
doi: 10.1007/978-981-33-6129-4_6 doi: 10.1016/j.eswa.2023.121732
19. Rojek I, Mikołajewski D, Dostatni E, Macko M. AI-optimized 29. Jan Z, Ahamed F, Mayer W, et al. Artificial intelligence for
technological aspects of the material used in 3D printing industry 4.0: Systematic review of applications, challenges,
processes for selected medical applications. Materials. and opportunities. Exp Syst Appl. 2023;216:119456.
2020;13(23):5437.
doi: 10.1016/j.eswa.2022.119456
doi: 10.3390/ma13235437
30. Sahoo SK, Das AK, Samanta S, Goswami SS. Assessing
20. Kantaros A, Ganetsos T. From static to dynamic: Smart the role of sustainable development in mitigating the
materials pioneering additive manufacturing in regenerative issue of global warming. J Process Manag New Technol.
medicine. Int J Mol Sci. 2023;24(21):15748. 2023;11(1-2):1-21.
doi: 10.3390/ijms242115748 doi: 10.5937/jpmnt11-44122
21. Kantaros A, Petrescu FI, Abdoli H, et al. Additive 31. Castañé G, Dolgui A, Kousi N, et al. The assistant project:
manufacturing for surgical planning and education: AI for high level decisions in manufacturing. Int J Prod Res.
A review. Appl Sci. 2024;14(6):2550. 2023;61(7):2288-2306.
doi: 10.3390/app14062550 doi: 10.1080/00207543.2022.2069525
22. Kantaros A, Piromalis D, Tsaramirsis G, Papageorgas P, 32. Wang K, Ying Z, Goswami SS, Yin Y, Zhao Y. Investigating
Tamimi H. 3D printing and implementation of digital twins: the role of artificial intelligence technologies in the
Current trends and limitations. Appl Syst Innov. 2021;5(1):7. construction industry using a Delphi-ANP-TOPSIS hybrid
MCDM concept under a fuzzy environment. Sustainability.
doi: 10.3390/asi5010007
2023;15(15):11848.
23. Hunde BR, Woldeyohannes AD. Future prospects of
computer-aided design (CAD)-A review from the doi: 10.3390/su151511848
perspective of artificial intelligence (AI), extended reality, 33. Mittal U, Yang H, Bukkapatnam ST, Barajas LG. Dynamics
and 3D printing. Results Eng. 2022;14:100478. and Performance Modeling of Multi-stage Manufacturing
Systems Using Nonlinear Stochastic Differential Equations.
doi: 10.1016/j.rineng.2022.100478
IEEE International Conference on Automation Science and
24. Zhu Z, Ng DW, Park HS, McAlpine MC. 3D-printed Engineering. 2008. p. 498-503.
multifunctional materials enabled by artificial-intelligence-
assisted fabrication technologies. Nat Rev Mater. doi: 10.1109/COASE.2008.4626530
2021;6(1):27-47. 34. Wei AT, Wang H, Dickens T, Chi H. Co-learning of extrusion
deposition quality for supporting interconnected additive
doi: 10.1038/s41578-020-00235-2
manufacturing systems. IISE Transac. 2023;55(4):405-418.
25. Caiazzo B, Murino T, Petrillo A, Piccirillo G, Santini S.
An IoT-based and cloud-assisted AI-driven monitoring doi: 10.1080/24725854.2022.2080306
platform for smart manufacturing: Design architecture 35. Mittal U, Panchal D. AI-based evaluation system for supply
and experimental validation. J Manuf Technol Manag. chain vulnerabilities and resilience amidst external shocks:
2023;34(4):507-534. An empirical approach. Rep Mech Eng. 2023;4(1):276-289.
doi: 10.1108/JMTM-02-2022-0092 doi: 10.31181/rme040122112023m
Volume 1 Issue 2 (2024) 39 doi: 10.36922/ijamd.3455

