Page 23 - IJAMD-1-3
P. 23

International Journal of AI for
            Materials and Design
                                                                              Smart cockpit design with generative models


               from GAN to ChatGPT. 2023.                         doi: 10.1016/j.procir.2023.01.021
               doi: 10.48550/arXiv.2303.04226                  18.  Zheng P, Yu S, Wang Y, Zhong RY, Xu X. User-experience
                                                                  based product development for mass personalization: A case
            7.   Qin HX, Hui P. Empowering the Metaverse with Generative   study. Procedia CIRP. 2017;63:2-7.
               AI: Survey and Future Directions. In: Proceedings-2023 IEEE
                 rd
               43   International Conference on Distributed Computing      doi: 10.1016/j.procir.2017.03.122
               Systems Workshops, (ICDCSW 2023). United States: Institute   19.  Zheng  P, Xu X,  Chen  CH. A  data-driven cyber-physical
               of Electrical and Electronics Engineers Inc.; 2023. p. 85-90.  approach for personalised smart, connected product
               doi: 10.1109/ICDCSW60045.2023.00022                co-development in a cloud-based environment.  J  Intell
                                                                  Manuf. 2020;31(1):3-18.
            8.   Ren M, Zheng P. Towards smart product-service systems 2.0:
               A retrospect and prospect. Adv Eng Inform. 2024;61:102466.     doi: 10.1007/s10845-018-1430-y
               doi: 10.1016/j.aei.2024.102466                  20.  Peng DX, Heim GR, Mallick DN. Collaborative product
                                                                  development: The effect of project complexity on the use of
            9.   Dorri  A,  Kanhere  SS,  Jurdak  R.  Multi-agent  systems:   information technology tools and new product development
               A survey. IEEE Access. 2018;6:28573-28593.
                                                                  practices. Prod Oper Manag. 2014;23(8):1421-1438.
               doi: 10.1109/ACCESS.2018.2831228
                                                                  doi: 10.1111/j.1937-5956.2012.01383.x
            10.  Wang B, Zhou H, Li X,  et al. Human digital twin in the   21.  Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-
               context of industry 5.0.  Robot  Comput  Integr  Manuf.   training of deep bidirectional transformers for language
               2024;85:102626.
                                                                  understanding. 2018.
               doi: 10.1016/j.rcim.2023.102626                    doi: 10.48550/arXiv.1810.04805
            11.  Barricelli BR, Casiraghi E, Gliozzo J, Petrini A, Valtolina S.   22.  Touvron H, Lavril T, Izacard G, et al. LLaMA: Open and
               Human digital twin for fitness management. IEEE Access.   efficient foundation language models. 2023.
               2020;8:26637-26664.
                                                                  doi: 10.48550/arXiv.2302.13971
               doi: 10.1109/ACCESS.2020.2971576
                                                               23.  Wang B, Zuo H, Cai Z, et al. A Task-decomposed Ai-aided
            12.  Wang Z, Zhang M, Sun H, Zhu G. Effects of standardization   Approach for Generative Conceptual Design. In: Proceedings
               and innovation on mass customization: An empirical   of the ASME Design Engineering Technical Conference. Vol 6.
               investigation. Technovation. 2016;48-49:79-86.     New  York: American Society of Mechanical Engineers
               doi: 10.1016/j.technovation.2016.01.003            (ASME); 2023.
            13.  Myrodia A, Kristjansdottir K, Hvam L. Impact of product      doi: 10.1115/detc2023-109087
               configuration systems on product profitability and costing   24.  Jiang S, Luo J. Autotriz: Artificial ideation with triz and large
               accuracy. Comput Ind. 2017;88:12-18.               language models. 2024.
               doi: 10.1016/j.compind.2017.03.001                 doi: 10.48550/arXiv.2403.13002
            14.  Levandowski CE, Jiao JR, Johannesson H. A two-stage model   25.  Yin H, Zhang Z, Liu Y. The exploration of integrating the
               of adaptable product platform for engineering-to-order   midjourney artificial intelligence generated content tool into
               configuration design. J Eng Des. 2015;26(7-9):220-235.  design systems to direct designers towards future-oriented
               doi: 10.1080/09544828.2015.1021305                 innovation. Systems. 2023;11(12):566.
            15.  Dong L, Ren M, Xiang Z, Zheng P, Cong J, Chen CH. A novel      doi: 10.3390/systems11120566
               smart product-service system configuration method for   26.  Wu Q, Bansal G, Zhang J, et al. AutoGen: Enabling next-gen
               mass personalization based on knowledge graph.  J  Clean   llm applications via multi-agent conversation. 2023.
               Prod. 2023;382:135270.
                                                                  doi: 10.48550/arXiv.2308.08155
               doi: 10.1016/j.jclepro.2022.135270
                                                               27.  Hong S, Zhuge M, Chen J, et al. MetaGPT: Meta programming
            16.  Hu K, Qiu L, Zhang S, Wang Z, Fang N. ICCP: A heuristic   for a multi-agent collaborative framework. 2023.
               process planning method for personalized product
               configuration design. Appl Intell. 2023;53(24):30887-30910.     doi: 10.48550/arXiv.2308.00352
               doi: 10.1007/s10489-023-05186-z                 28.  Chen L, Jing Q, Tsang Y, Wang Q, Sun L, Luo J. DesignFusion:
                                                                  Integrating generative models for conceptual design
            17.  Ren M, Dong L, Xia Z, Cong J, Zheng P. A  proactive   enrichment. J Mech Des. 2024;146(11):111703.
               interaction design method for personalized  user context
               prediction  in  smart-product  service  system.  Procedia      doi: 10.1115/1.4065487
               CIRP. 2023;119:963-968.                         29.  Çelen A, Han G, Schindler K, et al. I-Design: Personalized


            Volume 1 Issue 3 (2024)                         17                             doi: 10.36922/ijamd.4220
   18   19   20   21   22   23   24   25   26   27   28