Page 14 - IJAMD-2-3
P. 14

International Journal of AI for
            Materials and Design                                                   AI applications in composite materials




              A












              B                                  D














              C
                                                 E














                                                 F















            Figure 5. RNN, LSTM, and GRU architectures and research utilizing RNN in the field of composite materials. (A) Structure of RNN, LSTM, and GRU;
            (B) Comparison of actual and predicted results of water absorption;  (C) Comparison between the actual and predicted stress values;  (D) Network
                                                                                                    66
                                                        65
            architecture and the transfer learning approach utilizing a large mean-field and a small full-field data set;  (E) Overview of data-driven multiscale
                                                                                  67
            framework using DRCN networks;  (F) Architecture of PRNN for finite strain framework. 69
                                  68
            Abbreviations: BPNN: Backpropagation neural network; CHF: Corn husk  fiber;  DRCN: Decomposing  residual convolutional neural; GRU: Gated
            recurrent unit; LSTM: Long short-term memory; PP: Polypropylene; PRNN: Physically recurrent neural network; RF: Random forest; RNN: Recurrent
            neural network; RVE: Representative volume element.




            Volume 2 Issue 3 (2025)                         8                         doi: 10.36922/IJAMD025210016
   9   10   11   12   13   14   15   16   17   18   19