Page 182 - IJB-10-1
P. 182
International Journal of Bioprinting Bioprinted cell-laden hydrogel for tracheal application
Writing – original draft: Pengli Wang 8. Kandi R, Sachdeva K, Choudhury SD, Pandey PM, Mohanty
Writing – review & editing: Pengli Wang S. A facile 3D bio-fabrication of customized tubular scaffolds
using solvent-based extrusion printing for tissue-engineered
Ethics approval and consent to participate tracheal grafts. J Biomed Mater Res A. 2023;111(2): 278–293.
doi: 10.1002/jbm.a.37458
Ethical approval was obtained from the Experimental 9. Yang ML, Sun WY, Wang L, Tang H. Curcumin loaded
Animal Ethics Committee of Shanghai Pulmonary polycaprolactone scaffold capable of anti-inflammation
Hospital (K21-355Y). to enhance tracheal cartilage regeneration. Mater Design.
2022;224: 111299.
Consent for publication doi: 10.1016/j.matdes.2022.111299
Not applicable. 10. Bush A, Floto RA. Pathophysiology, causes and genetics
of paediatric and adult bronchiectasis. Respirology.
Availability of data 2019;24(11): 1053–1062.
doi: 10.1111/resp.13509
The data that support the findings of this study are
available from the corresponding author upon reasonable 11. Kolwijck E, van de Veerdonk FL. The potential impact of
the pulmonary microbiome on immunopathogenesis of
request.
Aspergillus-related lung disease. Eur J Immunol. 2014;44(11):
3156–3165.
References doi: 10.1002/eji.201344404
1. Xu Y, Li D, Yin ZQ, et al. Tissue-engineered trachea 12. Dhasmana A, Singh A, Rawal S. Biomedical grafts for
regeneration using decellularized trachea matrix treated tracheal tissue repairing and regeneration “Tracheal
with laser micropore technique. Acta Biomater. 2017;58: tissue engineering: an overview”. J Tissue Eng Regen Med.
113–121. 2020;14(5): 653–672.
doi: 10.1016/j.actbio.2017.05.010 doi: 10.1002/term.3019
2. Xu Y, Duan H, Li YQ, et al. Nanofibrillar decellularized 13. Reynolds PM, Holzmann Rasmussen C, Hansson M, Dufva
Wharton’s jelly matrix for segmental tracheal repair. Adv M, Riehle MO, Gadegaard N. Controlling fluid flow to
Funct Mater. 2020;30(14): 1910067. improve cell seeding uniformity. PLoS One. 2018;13(11):
doi: 10.1002/adfm.201910067 e0207211.
doi: 10.1371/journal.pone.0207211
3. Xu Y, Dai J, Zhu XS, et al. Biomimetic trachea engineering
via a modular ring strategy based on bone-marrow 14. Xu Y, Wang Z, Hua Y, et al. Photocrosslinked natural
stem cells and atelocollagen for use in extensive tracheal hydrogel composed of hyaluronic acid and gelatin enhances
reconstruction. Adv Mater. 2022;34(6): 2106755. cartilage regeneration of decellularized trachea matrix.
doi: 10.1002/adma.202106755 Mater Sci Eng C Mater Biol Appl. 2021;120: 111628.
doi: 10.1016/j.msec.2020.111628
4. Gao E, Li G, Cao RF, et al. Bionic tracheal tissue regeneration
using a ring-shaped scaffold comprised of decellularized 15. Xu Y, Li Y, Liu Y, et al. Surface modification of decellularized
cartilaginous matrix and silk fibroin. Compos Part B-Eng. trachea matrix with collagen and laser micropore technique
2022;229: 109470. to promote cartilage regeneration. Am J Transl Res.
doi: 10.1016/j.compositesb.2021.109470 2019;11(9): 5390–5403.
5. Xu Y, Guo Y, Li Y, et al. Biomimetic trachea regeneration 16. Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted
using a modular ring strategy based on poly(sebacoyl chitosan-based hydrogel scaffolds in tissue engineering and
diglyceride)/polycaprolactone for segmental trachea defect localised drug delivery. Pharmaceutics. 2022;14(9): 1978.
repair. Adv Funct Mater. 2020;30(42): 2004276. doi: 10.3390/pharmaceutics14091978
doi: 10.1002/adfm.202004276 17. Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-
6. Gao ER, Wang Y, Wang PL, et al. C-shaped cartilage mimetic cellular construct of a clinically relevant size.
development using Wharton’s jelly-derived hydrogels Biomaterials. 2021;279: 121246.
to assemble a highly biomimetic neotrachea for use in doi: 10.1016/j.biomaterials.2021.121246
circumferential tracheal reconstruction. Adv Funct Mater. 18. Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction
2023;33(14) 2212830. using 3D-bioprinted native-like tissue architecture based
doi: 10.1002/adfm.202212830 on designable tissue-specific bioinks. Adv Sci (Weinh).
2022;9(29): e2202181.
7. Hong H, Seo YB, Kim DY, et al. Digital light processing 3D
printed silk fibroin hydrogel for cartilage tissue engineering. doi: 10.1002/advs.202202181
Biomaterials. 2020;232: 119679. 19. Liu Y, Li D, Yin Z, et al. Prolonged in vitro precultivation
doi: 10.1016/j.biomaterials.2019.119679 alleviates post-implantation inflammation and promotes
Volume 10 Issue 1 (2024) 174 https://doi.org/10.36922/ijb.0146

