Page 182 - IJB-10-1
P. 182

International Journal of Bioprinting                        Bioprinted cell-laden hydrogel for tracheal application




            Writing – original draft: Pengli Wang              8.   Kandi R, Sachdeva K, Choudhury SD, Pandey PM, Mohanty
            Writing – review & editing: Pengli Wang               S. A facile 3D bio-fabrication of customized tubular scaffolds
                                                                  using solvent-based extrusion printing for tissue-engineered
            Ethics approval and consent to participate            tracheal grafts. J Biomed Mater Res A. 2023;111(2): 278–293.
                                                                  doi: 10.1002/jbm.a.37458
            Ethical approval was obtained from the Experimental   9.   Yang  ML,  Sun  WY,  Wang  L,  Tang  H.  Curcumin  loaded
            Animal Ethics Committee of Shanghai Pulmonary         polycaprolactone  scaffold  capable  of  anti-inflammation
            Hospital (K21-355Y).                                  to enhance tracheal cartilage regeneration.  Mater Design.
                                                                  2022;224: 111299.
            Consent for publication                               doi: 10.1016/j.matdes.2022.111299
            Not applicable.                                    10.  Bush A, Floto RA. Pathophysiology, causes and genetics
                                                                  of paediatric and adult bronchiectasis.  Respirology.
            Availability of data                                  2019;24(11): 1053–1062.
                                                                  doi: 10.1111/resp.13509
            The data that support the findings of this study are
            available from the corresponding author upon reasonable    11.  Kolwijck E, van de Veerdonk FL. The potential impact of
                                                                  the pulmonary microbiome on immunopathogenesis of
            request.
                                                                  Aspergillus-related lung disease. Eur J Immunol. 2014;44(11):
                                                                  3156–3165.
            References                                            doi: 10.1002/eji.201344404
            1.   Xu Y, Li D, Yin ZQ,  et al. Tissue-engineered trachea   12.  Dhasmana A, Singh A, Rawal S. Biomedical grafts for
               regeneration  using  decellularized  trachea  matrix  treated   tracheal tissue repairing and regeneration “Tracheal
               with laser micropore technique.  Acta Biomater. 2017;58:   tissue engineering: an overview”. J Tissue Eng Regen Med.
               113–121.                                           2020;14(5): 653–672.
               doi: 10.1016/j.actbio.2017.05.010                  doi: 10.1002/term.3019
            2.   Xu Y, Duan H, Li YQ,  et al. Nanofibrillar decellularized   13.  Reynolds PM, Holzmann Rasmussen C, Hansson M, Dufva
               Wharton’s jelly matrix for segmental tracheal repair.  Adv   M, Riehle MO, Gadegaard N. Controlling fluid flow to
               Funct Mater. 2020;30(14): 1910067.                 improve cell seeding uniformity.  PLoS One. 2018;13(11):
               doi: 10.1002/adfm.201910067                        e0207211.
                                                                  doi: 10.1371/journal.pone.0207211
            3.   Xu Y, Dai J, Zhu XS, et al. Biomimetic trachea engineering
               via a  modular ring strategy based on bone-marrow   14.  Xu Y, Wang Z, Hua Y,  et al. Photocrosslinked natural
               stem cells and atelocollagen for use in extensive tracheal   hydrogel composed of hyaluronic acid and gelatin enhances
               reconstruction. Adv Mater. 2022;34(6): 2106755.    cartilage regeneration of decellularized trachea matrix.
               doi: 10.1002/adma.202106755                        Mater Sci Eng C Mater Biol Appl. 2021;120: 111628.
                                                                  doi: 10.1016/j.msec.2020.111628
            4.   Gao E, Li G, Cao RF, et al. Bionic tracheal tissue regeneration
               using a ring-shaped scaffold comprised of decellularized   15.  Xu Y, Li Y, Liu Y, et al. Surface modification of decellularized
               cartilaginous matrix and silk fibroin.  Compos Part B-Eng.   trachea matrix with collagen and laser micropore technique
               2022;229: 109470.                                  to promote cartilage regeneration.  Am J Transl Res.
               doi: 10.1016/j.compositesb.2021.109470             2019;11(9): 5390–5403.
            5.   Xu Y, Guo Y, Li Y, et al. Biomimetic trachea regeneration   16.  Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted
               using  a  modular  ring  strategy  based  on  poly(sebacoyl   chitosan-based hydrogel scaffolds in tissue engineering and
               diglyceride)/polycaprolactone for segmental trachea defect   localised drug delivery. Pharmaceutics. 2022;14(9): 1978.
               repair. Adv Funct Mater. 2020;30(42): 2004276.     doi: 10.3390/pharmaceutics14091978
               doi: 10.1002/adfm.202004276                     17.  Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-
            6.   Gao ER, Wang  Y, Wang PL,  et  al. C-shaped cartilage   mimetic cellular construct of a clinically relevant size.
               development using  Wharton’s  jelly-derived hydrogels   Biomaterials. 2021;279: 121246.
               to  assemble  a  highly  biomimetic  neotrachea  for use  in      doi: 10.1016/j.biomaterials.2021.121246
               circumferential tracheal reconstruction.  Adv  Funct  Mater.   18.  Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction
               2023;33(14) 2212830.                               using 3D-bioprinted native-like tissue architecture based
               doi: 10.1002/adfm.202212830                        on designable tissue-specific bioinks.  Adv Sci (Weinh).
                                                                  2022;9(29): e2202181.
            7.   Hong H, Seo YB, Kim DY, et al. Digital light processing 3D
               printed silk fibroin hydrogel for cartilage tissue engineering.      doi: 10.1002/advs.202202181
               Biomaterials. 2020;232: 119679.                 19.  Liu Y, Li D, Yin Z, et al. Prolonged in vitro precultivation
               doi: 10.1016/j.biomaterials.2019.119679            alleviates post-implantation inflammation and promotes

            Volume 10 Issue 1 (2024)                       174                        https://doi.org/10.36922/ijb.0146
   177   178   179   180   181   182   183   184   185   186   187