Page 204 - IJB-10-1
P. 204

International Journal of Bioprinting                                 Nanoclay biopolymer inks for 3D printing




            16.  Sadeghianmaryan  A,  Naghieh  S,  Yazdanpanah  Z,  et  al.   27.  Qi X, Wei W, Shen J, Dong W. Salecan polysaccharide-based
               Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds   hydrogels and their applications: A review. J Mater Chem B.
               using 3D printing and impregnating techniques for potential   2019;7(16):2577-2587.
               cartilage regeneration. Int J Biol Macromol. 2022;204:62-75.     doi: 10.1039/C8TB03312A
               doi: 10.1016/j.ijbiomac.2022.01.201
                                                               28.  Fu R, Li J, Zhang T, et al. Salecan stabilizes the microstructure
            17.  Li H, Tan YJ, Leong KF, Li L. 3D bioprinting of highly thixotropic   and improves the rheological performance of yogurt. Food
               alginate/methylcellulose hydrogel with strong interface bonding.   Hydrocoll. 2018;81:474-480.
               ACS Appl Mater Interfaces. 2017;9(23):20086-20097.     doi: 10.1016/j.foodhyd.2018.03.034
               doi: 10.1021/acsami.7b04216                     29.  Fan Z, Cheng P, Gao Y, et al. Understanding the rheological
            18.  Kanafi NM, Rahman NA, Rosdi NH. Citric acid cross-linking   properties of a novel composite salecan/gellan hydrogels,
               of highly porous carboxymethyl cellulose/poly(ethylene   Food Hydrocolloids. 2022;123(2):107162
               oxide) composite hydrogel films for controlled release      doi: 10.1016/j.foodhyd.2021.107162
               applications. Mater Today: Proc. 2019;7(Part 2):721-731.  30.  Zhang Q, Ren T, Gan J, et al. Synthesis and rheological
               doi: 10.1016/j.matpr.2018.12.067                   characterization of a novel salecan hydrogel. Pharmaceutics;
            19.  Aljohani W, Ullah MW, Li W, Shi L, Zhang X, Yang G. Three-  2022;14(7):1492.
               dimensional printing of alginate-gelatin-agar scaffolds using      doi: 10.3390/pharmaceutics14071492
               free-form motor assisted microsyringe extrusion system.   31.  Fan Z, Cheng P, Yin G, Wang Z, Han J. In situ forming oxidized
               J Polym Res. 2018;25(3):62.                        salecan/gelatin injectable hydrogels for vancomycin delivery
               doi: 10.1007/s10965-018-1455-0                     and 3D cell culture. J Biomater Sci. 2020;31(6):762-780.
            20.  Wang J, Liu Y, Zhang X, et al. 3D printed agar/ calcium      doi: 10.1080/09205063.2020.1717739
               alginate hydrogels with high shape fidelity and tailorable   32.  Gan J, Sun L, Guan C, et al. Preparation and properties of
               mechanical properties. Polymer. 2021;214:123238.   salecan-soy protein isolate composite hydrogel induced
               doi: 10.1016/j.polymer.2020.123238                 by thermal treatment and transglutaminase. Int J Mol Sci.

            21.  Bednarzig V, Schrüfer S, Schneider TC, Schubert DW,   2022;23(16):9383.
               Detsch R, Boccaccini AR. Improved 3D printing and cell      doi: 10.3390/ijms23169383
               biology characterization of inorganic-filler containing   33.  Qi X, Su T, Tong X, et al. Facile formation of salecan/agarose
               alginate-based composites for bone regeneration: Particle   hydrogels with tunable structural properties for cell culture.
               shape and effective surface area are the dominant factors for   Carbohydr Polym. 2019;224:115208.
               printing performance. Int J Mol Sci. 2022;23(9):4750.     doi: 10.1016/j.carbpol.2019.115208
               doi: 10.3390/ijms23094750
                                                               34.  Hu X, Wang Y, Zhang L, Xu M, Dong W, Zhang J. Redox/pH
            22.  Bider F, Karakaya E, Mohn D, Boccaccini AR. Advantages of   dual stimuli-responsive degradable Salecan-g-SS-poly(IA-
               nanoscale bioactive glass as inorganic filler in alginate hydrogels   co-HEMA) hydrogel for release of doxorubicin. Carbohydr
               for drug delivery and biofabrication. EJMS. 2022;2(1):33-53.  Polym. 2017;155:242-251.
               doi: 10.1080/26889277.2022.2039078                 doi: 10.1016/j.carbpol.2016.08.077
            23.  Shahbazi M, Jäger H, Ahmadi SJ, Lacroix M. Electron beam   35.  Qi X, Wei W, Li J, et al. Design of salecan-containing semi-
               crosslinking of alginate/nanoclay ink to improve functional   IPN hydrogel for amoxicillin delivery.  Mater Sci Eng C.
               properties of 3D printed hydrogel for removing heavy metal   2017;75:487-494.
               ions. Carbohydr Polym. 2020;240:116211.            doi: 10.1016/j.msec.2017.02.089
               doi: 10.1016/j.carbpol.2020.116211
                                                               36.  Wei W, Hu X, Qi X, et al. A novel thermo-responsive hydrogel
            24.  Ahlfeld T, Cidonio G, Kilian D, et al. Development of a clay   based on  salecan  and poly(N-isopropylacrylamide):
               based bioink  for  3D  cell  printing  for skeletal  application.   Synthesis and characterization. Colloids Surf B: Biointerfaces.
               Biofabrication. 2017;9(3):034103.                  2015;125:1-11.
               doi: 10.1088/1758-5090/aa7e96                      doi: 10.1016/j.colsurfb.2014.10.057
            25.  Alexa RL, Iovu H, Trica B, et al. Assessment of naturally   37.  Munteanu T, Ninciuleanu CM, Gifu IC, et al. The effect of
               sourced mineral clays for the 3D printing of biopolymer-  clay type on the physicochemical properties of new hydrogel
               based nanocomposite inks. Nanomaterials. 2021;11(3):703.  clay nanocomposites, IntechOpen, UK. 2018.
               doi: 10.3390/nano11030703                          doi: 10.5772/intechopen.74478
            26.  Cidonio G, Glinka M, Kim YH, et al. Nanoclay-based   38.  Florian PE, Icriverzi M, Ninciuleanu CM, et al. Salecan-
               3D printed scaffolds promote vascular ingrowth  ex  vivo   clay based polymer nanocomposites for chemotherapeutic
               and generate bone mineral tissue  in vitro and  in vivo.   drug delivery systems; characterization and in vitro
               Biofabrication. 2020;12(3):035010.                 biocompatibility studies. Materials. 2020;13(23):5389.
               doi: 10.1088/1758-5090/ab8753                      doi: 10.3390/ma13235389



            Volume 10 Issue 1 (2024)                       196                        https://doi.org/10.36922/ijb.0967
   199   200   201   202   203   204   205   206   207   208   209