Page 206 - IJB-10-1
P. 206
International Journal of Bioprinting Nanoclay biopolymer inks for 3D printing
doi: 10.1016/j.ijbiomac.2023.123438 69. Hu X, Wang Y, Zhang L, Xu M, Zhang J, Dong W. Design of a
pH-sensitive magnetic composite hydrogel based on salecan
61. Serafin A, Murphy C, Rubio MC, Collins MN. Printable
alginate/gelatin hydrogel reinforced with carbon nanofibers graft copolymer and Fe3O4@SiO2 nanoparticles as drug
as electrically conductive scaffolds for tissue engineering. carrier. Int J Biol Macromol. 2018;107:1811-1820.
Mater Sci Eng C. 2021;122:111927. doi: 10.1016/j.ijbiomac.2017.10.043
doi: 10.1016/j.msec.2021.111927 70. Mollah MZI, Faruque MRI, Bradley DA, Khandaker MU,
Assaf SA. FTIR and rheology study of alginate samples:
62. Dávila JL, d’Ávila MA. Rheological evaluation of Laponite/
alginate inks for 3D extrusion-based printing. Int J Adv Effect of radiation. Radiat Phys Chem. 2023;202:110500.
Manuf Technol. 2019;101(1-4):675-686. doi: 10.1016/j.radphyschem.2022.110500
doi: 10.1007/s00170-018-2876-y 71. Zheng H, Yang J, Han S. The synthesis and characteristics of
63. Hickey RJ, Pelling AE. Cellulose biomaterials for tissue sodium alginate/graphene oxide composite films crosslinked
engineering. Front Bioeng Biotechnol. 2019;7:45. with multivalent cations. J Appl Polym Sci. 2016;133(27):43616.
doi: 10.3389/fbioe.2019.00045 doi: 10.1002/app.43616
64. Saveleva MS, Eftekhari K, Abalymov A, et al. Hierarchy of 72. Xinyu H, Linlin Y, Man X, Lihua T. Photo-degradable
hybrid materials—The place of inorganics-in-organics in it, salecan/xanthan gum ionic gel induced by iron (III)
their composition and applications. Front Chem. 2019;7:179. coordination for organic dye decontamination. Int J Biol
doi: 10.3389/fchem.2019.00179 Macromol. 2023;238:124132.
doi: 10.1016/j.ijbiomac.2023.124132
65. Sachot N, Engel E, Castano O. Hybrid organic-inorganic
scaffolding biomaterials for regenerative therapies. COC. 73. Qi X, Su T, Zhang M, et al. Macroporous hydrogel scaffolds
2014;18(18):2299-2314. with tunable physicochemical properties for tissue
doi: 10.2174/1385272819666140806200355 engineering constructed using renewable polysaccharides.
ACS Appl Mater Interfaces. 2020;12(11):13256-13264.
66. Handorf AM, Zhou Y, Halanski MA, Li WJ. Tissue stiffness doi: 10.1021/acsami.9b20794
dictates development, homeostasis, and disease progression.
Organogenesis. 2015;11(1):1-15. 74. Fan Z, Cheng P, Wang D, Zhao Y, Wang Z, Han J. Design
doi: 10.1080/15476278.2015.1019687 and investigation of salecan/chitosan hydrogel formulations
with improved antibacterial performance and 3D cell culture
67. Marin MM, Gifu IC, Pircalabioru GG, et al. Microbial function. J Biomater Sci. 2020;31(17):2268-2284.
polysaccharide-based formulation with silica nanoparticles; doi: 10.1080/09205063.2020.1800907
A new hydrogel nanocomposite for 3D printing. Gels.
2023;9(5):425. 75. Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous
doi: 10.3390/gels9050425 hydrogels: Present challenges and future opportunities.
Langmuir. 2023;39(6):2092-2111.
68. Hu X, Yan L, Wang Y, Xu M. Microwave-assisted synthesis of doi: 10.1021/acs.langmuir.2c02253
nutgall tannic acid–based salecan polysaccharide hydrogel
for tunable release of β-lactoglobulin. Int J Biol Macromol. 76. Lee KY, Mooney DJ. Alginate: Properties and biomedical
2020;161:1431-1439. applications. Prog Polym Sci. 2012;37(1):106-126.
doi: 10.1016/j.ijbiomac.2020.07.250 doi: 10.1016/j.progpolymsci.2011.06.003
Volume 10 Issue 1 (2024) 198 https://doi.org/10.36922/ijb.0967

