Page 318 - IJB-10-1
P. 318
International Journal of Bioprinting Low-cost quad-extrusion 3D bioprinting system
12. Celikkin N, Presutti D, Maiullari F, et al. Tackling current material bioprinting. Adv Mater. 2021;33(49).
biomedical challenges with frontier biofabrication and doi: 10.1002/adma.202104730.
organ-on-a-chip technologies. Front Bioeng Biotechnol.
2021;9(September):1–26. 25. Zhang YS, Haghiashtiani G, Hübscher T, Kelly DJ, Malda J. 3D
doi: 10.3389/fbioe.2021.732130 extrusion bioprinting. Nat Rev Methods Prim. 2021;1(1):75.
doi: 10.1038/s43586-021-00073-8
13. Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical
analysis on the effects of microfluidic-based bioprinting 26. Shen EM, McCloskey KE. Affordable, high-resolution
parameters on the microfiber geometrical outcomes. Sci bioprinting with embedded concentration gradients.
Rep. 2022;12(1):1–16. Bioprinting. 2021;21(October 2020):e00113.
doi: 10.1038/s41598-022-07392-0 doi: 10.1016/j.bprint.2020.e00113
14. Murphy CA, Lim KS, Woodfield TBF. Next evolution in organ- 27. Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-
scale biofabrication: Bioresin design for rapid high-resolution low-cost 3D bioprinting: Modification and application of an
vat polymerization. Adv Mater. 2022;34 (February). off-the-shelf desktop 3D-printer for biofabrication. Front
doi: 10.1002/adma.202107759 Bioeng Biotechnol. 2019;7(JUL):1–12.
doi: 10.3389/fbioe.2019.00184
15. Kang YJ. Microfluidic-based biosensor for blood viscosity
and erythrocyte sedimentation rate using disposable fluid 28. Wagner M, Karner A, Gattringer P, Buchegger B, Hochreiner
delivery system. Micromachines. 2020;11(2):1–25. A. A super low-cost bioprinter based on DVD-drive
doi: 10.3390/mi11020215 components and a raspberry pi as controller. Bioprinting.
2021;23(November 2020):e00142.
16. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D doi: 10.1016/j.bprint.2021.e00142
bioprinting system to produce human-scale tissue constructs
with structural integrity. Nat Biotechnol. 2016;34(3):312–319. 29. Pusch K, Hinton TJ, Feinberg AW. Large volume syringe
doi: 10.1038/nbt.3413 pump extruder for desktop 3D printers. HardwareX.
2018;3:49–61.
17. Mironov V, Kasyanov V, Markwald RR. Organ printing: From doi: 10.1016/j.ohx.2018.02.001
bioprinter to organ biofabrication line. Curr Opin Biotechnol.
2011;22(5):667–673. 30. Krige A, Haluška J, Rova U. Design and implementation of a low
doi: 10.1016/j.copbio.2011.02.006 cost bio-printer modification, allowing for switching between
plastic and gel extrusion. HardwareX. 2021;9:e00186.
18. Kang DH, Louis F, Liu H, et al. Engineered whole cut meat-
like tissue by the assembly of cell fibers using tendon-gel doi: 10.1016/j.ohx.2021.e00186
integrated bioprinting. Nat Commun. 2021;12(1). 31. Yenilmez B, Temirel M, Knowlton S, Lepowsky E.
doi: 10.1038/s41467-021-25236-9 Development and characterization of a low-cost 3D
19. Ramachandraiah K. Potential development of sustainable bioprinter. Bioprinting. 2019;13(December 2018):e00044.
3d-printed meat analogues: A review. Sustain. 2021; doi: 10.1016/j.bprint.2019.e00044
13(2):1–20. 32. Bessler N, Ogiermann D, Buchholz MB, Zhang F, Cao K,
doi: 10.3390/su13020938 Chang RC. Nydus one syringe extruder (NOSE): A Prusa i3
20. Warburton L, Lou L, Rubinsky B. A modular three- 3D printer conversion for bioprinting applications utilizing
dimensional bioprinter for printing porous scaffolds for the FRESH-method. HardwareX. 2019;6:e00069.
tissue engineering. J Heat Transfer. 2022;144(3):1–7. doi: 10.1016/j.ohx.2019.e00069
doi: 10.1115/1.4053198 33. Tashman JW, Shiwarski DJ, Feinberg AW. A high
21. Tavafoghi M, Darabi MA, Mahmoodi M, et al. Multimaterial performance open-source syringe extruder optimized for
bioprinting and combination of processing techniques extrusion and retraction during FRESH 3D bioprinting.
towards the fabrication of biomimetic tissues and organs. HardwareX. 2021;9(2021):e00170.
Biofabrication. 2021;13(4). doi: 10.1016/j.ohx.2020.e00170
doi: 10.1088/1758-5090/ac0b9a 34. Garciamendez-Mijares CE, Agrawal P, García Martínez G,
22. Tong A, Pham QL, Abatemarco P, et al. Review of low-cost Juárez EC. State-of-art affordable bioprinters: A guide for
3D bioprinters: State of the market and observed future the DiY community. Appl Phys Rev. 2021;8(3):47818.
trends. SLAS Technol. 2021;26(4):333–366. doi: 10.1063/5.0047818
doi: 10.1177/24726303211020297
35. Ding H, Illsley NP, Chang RC. 3D bioprinted GelMA based
23. Choudhury D, Anand S, Naing MW. The arrival of models for the study of trophoblast cell invasion. Sci Rep.
commercial bioprinters - Towards 3D bioprinting 2019;9(1):1–14.
revolution! Int J Bioprinting. 2018;4(2):1–20. doi: 10.1038/s41598-019-55052-7
doi: 10.18063/IJB.v4i2.139
36. Salahuddin B, Wang S, Sangian D, Aziz S. Hybrid gelatin
24. Ravanbakhsh H, Karamzadeh V, Bao G, Luc Mongeau, hydrogels in nanomedicine applications. ACS Appl Bio
Juncker D, Zhang YS. Emerging technologies in multi- Mater. 2021;4(4):2886–2906.
Volume 10 Issue 1 (2024) 310 https://doi.org/10.36922/ijb.0159

