Page 318 - IJB-10-1
P. 318

International Journal of Bioprinting                            Low-cost quad-extrusion 3D bioprinting system




            12.   Celikkin N, Presutti D, Maiullari F, et al. Tackling current   material bioprinting. Adv Mater. 2021;33(49).
               biomedical challenges with frontier biofabrication and      doi: 10.1002/adma.202104730.
               organ-on-a-chip technologies.  Front Bioeng Biotechnol.
               2021;9(September):1–26.                         25.   Zhang YS, Haghiashtiani G, Hübscher T, Kelly DJ, Malda J. 3D
               doi: 10.3389/fbioe.2021.732130                     extrusion bioprinting. Nat Rev Methods Prim. 2021;1(1):75.
                                                                  doi: 10.1038/s43586-021-00073-8
            13.   Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical
               analysis on  the  effects  of microfluidic-based bioprinting   26.   Shen EM, McCloskey KE. Affordable, high-resolution
               parameters on the microfiber geometrical outcomes.  Sci   bioprinting with embedded concentration gradients.
               Rep. 2022;12(1):1–16.                              Bioprinting. 2021;21(October 2020):e00113.
               doi: 10.1038/s41598-022-07392-0                    doi: 10.1016/j.bprint.2020.e00113
            14.   Murphy CA, Lim KS, Woodfield TBF. Next evolution in organ-  27.   Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-
               scale biofabrication: Bioresin design for rapid high-resolution   low-cost 3D bioprinting: Modification and application of an
               vat polymerization. Adv Mater. 2022;34 (February).  off-the-shelf desktop 3D-printer for biofabrication.  Front
               doi: 10.1002/adma.202107759                        Bioeng Biotechnol. 2019;7(JUL):1–12.
                                                                  doi: 10.3389/fbioe.2019.00184
            15.   Kang YJ. Microfluidic-based biosensor for blood viscosity
               and  erythrocyte  sedimentation  rate  using  disposable  fluid   28.   Wagner M, Karner A, Gattringer P, Buchegger B, Hochreiner
               delivery system. Micromachines. 2020;11(2):1–25.   A. A super  low-cost bioprinter based  on DVD-drive
               doi: 10.3390/mi11020215                            components and a  raspberry  pi as controller.  Bioprinting.
                                                                  2021;23(November 2020):e00142.
            16.   Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D      doi: 10.1016/j.bprint.2021.e00142
               bioprinting system to produce human-scale tissue constructs
               with structural integrity. Nat Biotechnol. 2016;34(3):312–319.  29.   Pusch K, Hinton TJ, Feinberg AW. Large volume syringe
               doi: 10.1038/nbt.3413                              pump extruder for desktop 3D printers.  HardwareX.
                                                                  2018;3:49–61.
            17.   Mironov V, Kasyanov V, Markwald RR. Organ printing: From      doi: 10.1016/j.ohx.2018.02.001
               bioprinter to organ biofabrication line. Curr Opin Biotechnol.
               2011;22(5):667–673.                             30.   Krige A, Haluška J, Rova U. Design and implementation of a low
               doi: 10.1016/j.copbio.2011.02.006                  cost bio-printer modification, allowing for switching between
                                                                  plastic and gel extrusion. HardwareX. 2021;9:e00186.
            18.   Kang DH, Louis F, Liu H, et al. Engineered whole cut meat-
               like tissue by the assembly of cell fibers using tendon-gel      doi: 10.1016/j.ohx.2021.e00186
               integrated bioprinting. Nat Commun. 2021;12(1).  31.   Yenilmez B, Temirel M, Knowlton S, Lepowsky E.
               doi: 10.1038/s41467-021-25236-9                    Development  and  characterization  of  a  low-cost  3D
            19.   Ramachandraiah K. Potential development of sustainable   bioprinter. Bioprinting. 2019;13(December 2018):e00044.
               3d-printed meat analogues: A review.  Sustain. 2021;      doi: 10.1016/j.bprint.2019.e00044
               13(2):1–20.                                     32.   Bessler N, Ogiermann D, Buchholz MB, Zhang F, Cao K,
               doi: 10.3390/su13020938                            Chang RC. Nydus one syringe extruder (NOSE): A Prusa i3
            20.   Warburton L, Lou L, Rubinsky B. A modular three-  3D printer conversion for bioprinting applications utilizing
               dimensional bioprinter  for  printing  porous  scaffolds  for   the FRESH-method. HardwareX. 2019;6:e00069.
               tissue engineering. J Heat Transfer. 2022;144(3):1–7.     doi: 10.1016/j.ohx.2019.e00069
               doi: 10.1115/1.4053198                          33.   Tashman JW, Shiwarski DJ, Feinberg AW. A high
            21.   Tavafoghi M, Darabi MA, Mahmoodi M, et al. Multimaterial   performance open-source syringe extruder optimized for
               bioprinting and combination of processing techniques   extrusion and retraction during FRESH 3D bioprinting.
               towards the fabrication of biomimetic tissues and organs.   HardwareX. 2021;9(2021):e00170.
               Biofabrication. 2021;13(4).                        doi: 10.1016/j.ohx.2020.e00170
               doi: 10.1088/1758-5090/ac0b9a                   34.   Garciamendez-Mijares CE, Agrawal P, García Martínez G,
            22.   Tong A, Pham QL, Abatemarco P, et al. Review of low-cost   Juárez  EC. State-of-art affordable bioprinters: A guide  for
               3D bioprinters: State of the market and observed future   the DiY community. Appl Phys Rev. 2021;8(3):47818.
               trends. SLAS Technol. 2021;26(4):333–366.          doi: 10.1063/5.0047818
               doi: 10.1177/24726303211020297
                                                               35.   Ding H, Illsley NP, Chang RC. 3D bioprinted GelMA based
            23.   Choudhury  D,  Anand  S,  Naing  MW.  The  arrival  of   models for the study of trophoblast cell invasion. Sci Rep.
               commercial bioprinters - Towards 3D bioprinting    2019;9(1):1–14.
               revolution! Int J Bioprinting. 2018;4(2):1–20.     doi: 10.1038/s41598-019-55052-7
               doi: 10.18063/IJB.v4i2.139
                                                               36.   Salahuddin B, Wang S, Sangian D, Aziz S. Hybrid gelatin
            24.   Ravanbakhsh H, Karamzadeh V, Bao G, Luc Mongeau,   hydrogels in nanomedicine applications.  ACS Appl Bio
               Juncker D, Zhang YS. Emerging technologies in multi-  Mater. 2021;4(4):2886–2906.

            Volume 10 Issue 1 (2024)                       310                        https://doi.org/10.36922/ijb.0159
   313   314   315   316   317   318   319   320   321   322   323