Page 319 - IJB-10-1
P. 319

International Journal of Bioprinting                            Low-cost quad-extrusion 3D bioprinting system




               doi: 10.1021/acsabm.0c01630                        on induced shear stress and its effect on cell viability.
                                                                  Bioprinting. 2020;20(August):e00093.
            37.   Li  H,  Tan  YJ,  Kiran  R,  Shu  Beng  T,  Kun  Z.  Submerged
               and non-submerged 3D bioprinting approaches for the   doi: 10.1016/j.bprint.2020.e00093
               fabrication of complex structures with the hydrogel   49.   Liu  W, Heinrich  MA, Zhou  Y, et al.  Extrusion bioprinting
               pair GelMA and alginate/methylcellulose.  Addit Manuf.   of shear-thinning gelatin methacryloyl bioinks. Adv Healthc
               2021;37(October 2020):101640.                      Mater. 2017;6(12):1–11.
               doi: 10.1016/j.addma.2020.101640                   doi: 10.1002/adhm.201601451
            38.   S. Alsoufi M, W. Alhazmi M, K. Suker D, et al. Experimental   50.   Emmermacher J, Spura D, Cziommer J, et al. Engineering
               characterization of the influence of nozzle temperature in   considerations on extrusion-based bioprinting: interactions
               FDM 3D printed pure PLA and advanced PLA+. Am J Mech   of material behavior, mechanical forces and cells in the
               Eng. 2019;7(2):45–60.                              printing needle. Biofabrication. 2020;12(2).
               doi: 10.12691/ajme-7-2-1                           doi: 10.1088/1758-5090/ab7553
            39.   Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized   51.   Han S, Kim CM, Jin S, Kim TY. Study of the process-induced
               tissue constructs with complex microarchitecture. Biomaterials.   cell damage in forced extrusion bioprinting. Biofabrication.
               2017;124(April 2017):106–115.                      2021;13(3).
               doi: 10.1016/j.biomaterials.2017.01.042.Direct     doi: 10.1088/1758-5090/ac0415
            40.   Ding H, Chang RC. Printability study of bioprinted tubular   52.   Poologasundarampillai G, Haweet A, Jayash SN, Morgan
               structures using liquid hydrogel precursors in a support   G, Moore JE. , Alessia C. Real-time imaging and analysis
               bath. Appl Sci. 2018;8(3).                         of  cell-hydrogel  interplay  within  an  extrusion-bioprinting
               doi: 10.3390/app8030403                            capillary. Bioprinting. 2021;23(May):e00144.
                                                                  doi: 10.1016/j.bprint.2021.e00144
            41.   Gu  Y,  Schwarz  B,  Forget  A,  Barbero A,  Martin  I,  Prasad
               Shastri V. Advanced bioink for 3D bioprinting of complex   53.   Boularaoui S, Shanti  A,  Lanotte  M,  et  al.  Nanocomposite
               free-standing structures with high stiffness. Bioengineering.   conductive bioinks based on low-concentration GelMA and
               2020;7(4):1–15.                                    MXene nanosheets/gold nanoparticles providing enhanced
               doi: 10.3390/bioengineering7040141                 printability of functional skeletal muscle tissues.  ACS
                                                                  Biomater Sci Eng. 2021;7(12):5810–5822.
            42.   Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J.      doi: 10.1021/acsbiomaterials.1c01193
               Printability and shape fidelity of bioinks in 3D bioprinting.
               Chem Rev. 2020;120(19):11028–11055.             54.   Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-
               doi: 10.1021/acs.chemrev.0c00084                   concentration cell-laden gelatin methacrylate (GelMA)
                                                                  bioinks with a two-step cross-linking strategy.  ACS Appl
            43.   Bonatti  AF,  Chiesa  I,  Vozzi  G,  De  Maria  C.  Open-source   Mater Interfaces. 2018;10(8):6849–6857.
               CAD-CAM simulator of the extrusion-based bioprinting      doi: 10.1021/acsami.7b16059
               process. Bioprinting. 2021;24(July):e00172.
               doi: 10.1016/j.bprint.2021.e00172               55.   Xu W, Molino BZ, Cheng F, et al. On low-concentration inks
                                                                  formulated by nanocellulose assisted with gelatin methacrylate
            44.   Paxton  N,  Smolan  W,  Böck  T, Melchels  F,  Groll  J,  Jungst   (GelMA) for 3D printing toward wound healing application.
               T. Proposal to assess printability of bioinks for extrusion-  ACS Appl Mater Interfaces. 2019;11(9):8838–8848.
               based bioprinting and evaluation of rheological properties      doi: 10.1021/acsami.8b21268
               governing bioprintability. Biofabrication. 2017;9(4).
               doi: 10.1088/1758-5090/aa8dd8                   56.   Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties
                                                                  on printability and cell viability for 3D bioplotting of
            45.   Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov   embryonic stem cells. Biofabrication. 2016;8(3):035020.
               A. Bioink properties before, during and after 3D bioprinting.      doi: 10.1088/1758-5090/8/3/035020
               Biofabrication. 2016;8(3).                      57.   Abou-Kheir W, Barrak J, Hadadeh O, Daoud G. HTR-
               doi: 10.1088/1758-5090/8/3/032002
                                                                  8/SVneo cell line contains a mixed population of cells.
            46.   Suntornnond R, An J, Chua CK. Bioprinting of    Placenta. 2017;50:1–7.
               thermoresponsive hydrogels for next generation tissue      doi: 10.1016/j.placenta.2016.12.007
               engineering: A review. Macromol Mater Eng. 2017;302(1).  58.   Msheik H, Azar J, El Sabeh M, Abou-Kheir W, Daoud G. HTR-
               doi: 10.1002/mame.201600266
                                                                  8/SVneo: A model for epithelial to mesenchymal transition in
            47.   Li H, Zheng  H, Tan YJ,  Tor SB,  Zhou  K. Development of   the human placenta. Placenta. 2020;90(September 2019):90–97.
               an ultrastretchable double-network hydrogel for flexible      doi: 10.1016/j.placenta.2019.12.013
               strain sensors.  ACS Appl Mater Interfaces. 2021;13(11):   59.   Kuo CY, Eranki A, Placone JK, et al. Development of a 3D
               12814–12823.                                       printed, bioengineered placenta model to evaluate the role of
               doi: 10.1021/acsami.0c19104                        trophoblast migration in preeclampsia. ACS Biomater Sci Eng.
            48.   Boularaoui S, Al Hussein G, Khan KA, Christoforou N.   2016;2(10):1817–1826.
               An overview of extrusion-based bioprinting with a focus      doi: 10.1021/acsbiomaterials.6b00031
            Volume 10 Issue 1 (2024)                       311                        https://doi.org/10.36922/ijb.0159
   314   315   316   317   318   319   320   321   322   323   324