Page 319 - IJB-10-1
P. 319
International Journal of Bioprinting Low-cost quad-extrusion 3D bioprinting system
doi: 10.1021/acsabm.0c01630 on induced shear stress and its effect on cell viability.
Bioprinting. 2020;20(August):e00093.
37. Li H, Tan YJ, Kiran R, Shu Beng T, Kun Z. Submerged
and non-submerged 3D bioprinting approaches for the doi: 10.1016/j.bprint.2020.e00093
fabrication of complex structures with the hydrogel 49. Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting
pair GelMA and alginate/methylcellulose. Addit Manuf. of shear-thinning gelatin methacryloyl bioinks. Adv Healthc
2021;37(October 2020):101640. Mater. 2017;6(12):1–11.
doi: 10.1016/j.addma.2020.101640 doi: 10.1002/adhm.201601451
38. S. Alsoufi M, W. Alhazmi M, K. Suker D, et al. Experimental 50. Emmermacher J, Spura D, Cziommer J, et al. Engineering
characterization of the influence of nozzle temperature in considerations on extrusion-based bioprinting: interactions
FDM 3D printed pure PLA and advanced PLA+. Am J Mech of material behavior, mechanical forces and cells in the
Eng. 2019;7(2):45–60. printing needle. Biofabrication. 2020;12(2).
doi: 10.12691/ajme-7-2-1 doi: 10.1088/1758-5090/ab7553
39. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized 51. Han S, Kim CM, Jin S, Kim TY. Study of the process-induced
tissue constructs with complex microarchitecture. Biomaterials. cell damage in forced extrusion bioprinting. Biofabrication.
2017;124(April 2017):106–115. 2021;13(3).
doi: 10.1016/j.biomaterials.2017.01.042.Direct doi: 10.1088/1758-5090/ac0415
40. Ding H, Chang RC. Printability study of bioprinted tubular 52. Poologasundarampillai G, Haweet A, Jayash SN, Morgan
structures using liquid hydrogel precursors in a support G, Moore JE. , Alessia C. Real-time imaging and analysis
bath. Appl Sci. 2018;8(3). of cell-hydrogel interplay within an extrusion-bioprinting
doi: 10.3390/app8030403 capillary. Bioprinting. 2021;23(May):e00144.
doi: 10.1016/j.bprint.2021.e00144
41. Gu Y, Schwarz B, Forget A, Barbero A, Martin I, Prasad
Shastri V. Advanced bioink for 3D bioprinting of complex 53. Boularaoui S, Shanti A, Lanotte M, et al. Nanocomposite
free-standing structures with high stiffness. Bioengineering. conductive bioinks based on low-concentration GelMA and
2020;7(4):1–15. MXene nanosheets/gold nanoparticles providing enhanced
doi: 10.3390/bioengineering7040141 printability of functional skeletal muscle tissues. ACS
Biomater Sci Eng. 2021;7(12):5810–5822.
42. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. doi: 10.1021/acsbiomaterials.1c01193
Printability and shape fidelity of bioinks in 3D bioprinting.
Chem Rev. 2020;120(19):11028–11055. 54. Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-
doi: 10.1021/acs.chemrev.0c00084 concentration cell-laden gelatin methacrylate (GelMA)
bioinks with a two-step cross-linking strategy. ACS Appl
43. Bonatti AF, Chiesa I, Vozzi G, De Maria C. Open-source Mater Interfaces. 2018;10(8):6849–6857.
CAD-CAM simulator of the extrusion-based bioprinting doi: 10.1021/acsami.7b16059
process. Bioprinting. 2021;24(July):e00172.
doi: 10.1016/j.bprint.2021.e00172 55. Xu W, Molino BZ, Cheng F, et al. On low-concentration inks
formulated by nanocellulose assisted with gelatin methacrylate
44. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst (GelMA) for 3D printing toward wound healing application.
T. Proposal to assess printability of bioinks for extrusion- ACS Appl Mater Interfaces. 2019;11(9):8838–8848.
based bioprinting and evaluation of rheological properties doi: 10.1021/acsami.8b21268
governing bioprintability. Biofabrication. 2017;9(4).
doi: 10.1088/1758-5090/aa8dd8 56. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties
on printability and cell viability for 3D bioplotting of
45. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov embryonic stem cells. Biofabrication. 2016;8(3):035020.
A. Bioink properties before, during and after 3D bioprinting. doi: 10.1088/1758-5090/8/3/035020
Biofabrication. 2016;8(3). 57. Abou-Kheir W, Barrak J, Hadadeh O, Daoud G. HTR-
doi: 10.1088/1758-5090/8/3/032002
8/SVneo cell line contains a mixed population of cells.
46. Suntornnond R, An J, Chua CK. Bioprinting of Placenta. 2017;50:1–7.
thermoresponsive hydrogels for next generation tissue doi: 10.1016/j.placenta.2016.12.007
engineering: A review. Macromol Mater Eng. 2017;302(1). 58. Msheik H, Azar J, El Sabeh M, Abou-Kheir W, Daoud G. HTR-
doi: 10.1002/mame.201600266
8/SVneo: A model for epithelial to mesenchymal transition in
47. Li H, Zheng H, Tan YJ, Tor SB, Zhou K. Development of the human placenta. Placenta. 2020;90(September 2019):90–97.
an ultrastretchable double-network hydrogel for flexible doi: 10.1016/j.placenta.2019.12.013
strain sensors. ACS Appl Mater Interfaces. 2021;13(11): 59. Kuo CY, Eranki A, Placone JK, et al. Development of a 3D
12814–12823. printed, bioengineered placenta model to evaluate the role of
doi: 10.1021/acsami.0c19104 trophoblast migration in preeclampsia. ACS Biomater Sci Eng.
48. Boularaoui S, Al Hussein G, Khan KA, Christoforou N. 2016;2(10):1817–1826.
An overview of extrusion-based bioprinting with a focus doi: 10.1021/acsbiomaterials.6b00031
Volume 10 Issue 1 (2024) 311 https://doi.org/10.36922/ijb.0159

