Page 48 - IJB-10-1
P. 48
International Journal of Bioprinting Bioprinted organ-on-a-chip with biomaterials
18. Reid JA, Mollica PA, Johnson GD, Ogle RC, Bruno RD, 31. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem
Sachs PC. Accessible bioprinting: adaptation of a low- Rev. 2001;101(7): 1869-1880.
cost 3D-printer for precise cell placement and stem cell doi: 10.1021/cr000108x
differentiation. Biofabrication. 2016;8(2): 025017. 32. Khademhosseini A, Langer R. Microengineered hydrogels
doi: 10.1088/1758-5090/8/2/025017
for tissue engineering. Biomaterials. 2007;28(34): 5087-5092.
19. Ozbolat IT, Moncal KK, Gudapati H. Evaluation of doi: 10.1016/j.biomaterials.2007.07.021
bioprinter technologies. Addit Manuf. 2017;13: 179-200.
doi: 10.1016/j.addma.2016.10.003 33. Jang J, Yi H-G, Cho D-W. 3D printed tissue models: present
and future. ACS Biomater Sci Eng. 2016;2(10): 1722-1731.
20. Carvalho V, Gonçalves I, Lage T, et al. 3D printing techniques doi: 10.1021/acsbiomaterials.6b00129
and their applications to organ-on-a-chip platforms: a
systematic review. Sensors. 2021;21(9): 3304. 34. Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards
doi: 10.3390/s21093304 physiologically relevant tissue models for pharmaceutics.
Trends Biotechnol. 2016;34(9): 722-732.
21. Ambhorkar P, Rakin RH, Wang Z, Kumar H, Kim K. doi: 10.1016/j.tibtech.2016.05.013
Biofabrication strategies for engineering heterogeneous
artificial tissues. Addit Manuf. 2020;36: 101459. 35. Malda J, Visser J, Melchels FP, et al. 25th anniversary
doi: 10.1016/j.addma.2020.101459 article: engineering hydrogels for biofabrication. Adv Mater.
2013;25(36): 5011-5028.
22. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin doi: 10.1002/adma.201302042
CT. Progress in 3D bioprinting technology for tissue/organ
regenerative engineering. Biomaterials. 2020;226: 119536. 36. Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue
doi: 10.1016/j.biomaterials.2019.119536 engineering: development of novel biomaterials and
applications. Pediatr Res. 2008;63(5): 492-496.
23. Jung JW, Lee J-S, Cho D-W. Computer-aided multiple-head doi: 10.1203/PDR.0b013e31816c5bc3
3D printing system for printing of heterogeneous organ/
tissue constructs. Sci Rep. 2016;6(1): 21685. 37. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based
doi: 10.1038/srep21685 biomaterials for tissue engineering applications. Materials.
2010;3(3): 1863-1887.
24. Hockaday L, Kang K, Colangelo N, et al. Rapid 3D printing of doi: 10.3390/ma3031863
anatomically accurate and mechanically heterogeneous aortic
valve hydrogel scaffolds. Biofabrication. 2012;4(3): 035005. 38. Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live
doi: 10.1088/1758-5082/4/3/035005 cells. Eng Regen. 2022;3(3): 292-309.
doi: 10.1016/j.engreg.2022.07.002
25. Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation
of stereolithography for the production of microfluidic 39. Gaudet ID, Shreiber DI. Characterization of methacrylated
devices. Lab Chip. 2014;14(7): 1294-1301. type-I collagen as a dynamic, photoactive hydrogel.
doi: 10.1039/c3lc51360b Biointerphases. 2012;7(1): 25.
doi: 10.1007/s13758-012-0025-y
26. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming
3D-printing revolution in microfluidics. Lab Chip. 40. Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-
2016;16(10): 1720-1742. based cell-laden bioinks compared to methacrylated gelatin
doi: 10.1039/c6lc00163g (GelMA) in digital light processing (DLP) and extrusion
bioprinting. Mater Today Bio. 2023;23: 100799.
27. Lee H, Kim J, Choi Y, Cho D-W. Application of gelatin doi: 10.1016/j.mtbio.2023.100799
bioinks and cell-printing technology to enhance cell delivery
capability for 3D liver fibrosis-on-a-chip development. 41. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and
ACS Biomater Sci Eng. 2020;6(4): 2469-2477. synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res.
doi: 10.1021/acsbiomaterials.9b01735 2021;1(8): 2000097.
doi: 10.1002/anbr.202000097
28. Skardal A, Atala A. Biomaterials for integration with 3-D
bioprinting. Ann Biomed Eng. 2015;43(3): 730-746. 42. Shin JH, Kang H-W. The development of gelatin-based bio-
doi: 10.1007/s10439-014-1207-1 ink for use in 3D hybrid bioprinting. Int J Prec Eng Manuf.
2018;19: 767-771.
29. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting:
a comprehensive review on cell-laden hydrogels, bioink doi: 10.1007/s12541-018-0092-1
formulations, and future perspectives. Appl Mater Today. 43. Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink
2020;18: 100479. reinforcement for additive manufacturing: a focused
doi: 10.1016/j.apmt.2019.100479 review of emerging strategies. Adv Mater. 2020;32(1):
1902026.
30. Murphy SV, Skardal A, Atala A. Evaluation of hydrogels doi: 10.1002/adma.201902026
for bio‐printing applications. J Biomed Mater Res Part A.
2013;101(1): 272-284. 44. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S,
doi: 10.1002/jbm.a.34326 Khademhosseini A. Cell-laden microengineered gelatin
Volume 10 Issue 1 (2024) 40 https://doi.org/10.36922/ijb.1972

