Page 48 - IJB-10-1
P. 48

International Journal of Bioprinting                              Bioprinted organ-on-a-chip with biomaterials




            18.  Reid JA, Mollica PA, Johnson GD,  Ogle RC, Bruno RD,   31.  Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem
               Sachs PC. Accessible bioprinting: adaptation of a low-  Rev. 2001;101(7): 1869-1880.
               cost 3D-printer for precise cell placement and stem cell      doi: 10.1021/cr000108x
               differentiation. Biofabrication. 2016;8(2): 025017.   32.  Khademhosseini A, Langer R. Microengineered hydrogels
               doi: 10.1088/1758-5090/8/2/025017
                                                                  for tissue engineering. Biomaterials. 2007;28(34): 5087-5092.
            19.  Ozbolat IT, Moncal KK, Gudapati H. Evaluation of      doi: 10.1016/j.biomaterials.2007.07.021
               bioprinter technologies. Addit Manuf. 2017;13: 179-200.
               doi: 10.1016/j.addma.2016.10.003                33.  Jang J, Yi H-G, Cho D-W. 3D printed tissue models: present
                                                                  and future. ACS Biomater Sci Eng. 2016;2(10): 1722-1731.
            20.  Carvalho V, Gonçalves I, Lage T, et al. 3D printing techniques      doi: 10.1021/acsbiomaterials.6b00129
               and their applications to organ-on-a-chip platforms: a
               systematic review. Sensors. 2021;21(9): 3304.   34.  Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards
               doi: 10.3390/s21093304                             physiologically  relevant  tissue  models  for  pharmaceutics.
                                                                  Trends Biotechnol. 2016;34(9): 722-732.
            21.  Ambhorkar P, Rakin RH, Wang Z,  Kumar H, Kim K.      doi: 10.1016/j.tibtech.2016.05.013
               Biofabrication strategies for engineering heterogeneous
               artificial tissues. Addit Manuf. 2020;36: 101459.   35.  Malda J, Visser J, Melchels FP,  et al. 25th anniversary
               doi: 10.1016/j.addma.2020.101459                   article: engineering hydrogels for biofabrication. Adv Mater.
                                                                  2013;25(36): 5011-5028.
            22.  Matai  I,  Kaur  G,  Seyedsalehi  A,  McClinton  A,  Laurencin      doi: 10.1002/adma.201302042
               CT. Progress in 3D bioprinting technology for tissue/organ
               regenerative engineering. Biomaterials. 2020;226: 119536.   36.  Cen  L,  Liu  W,  Cui  L,  Zhang  W,  Cao  Y.  Collagen  tissue
               doi: 10.1016/j.biomaterials.2019.119536            engineering: development of novel biomaterials and
                                                                  applications. Pediatr Res. 2008;63(5): 492-496.
            23.  Jung JW, Lee J-S, Cho D-W. Computer-aided multiple-head      doi: 10.1203/PDR.0b013e31816c5bc3
               3D printing system for printing of heterogeneous organ/
               tissue constructs. Sci Rep. 2016;6(1): 21685.   37.  Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based
               doi: 10.1038/srep21685                             biomaterials for tissue engineering applications. Materials.
                                                                  2010;3(3): 1863-1887.
            24.  Hockaday L, Kang K, Colangelo N, et al. Rapid 3D printing of      doi: 10.3390/ma3031863
               anatomically accurate and mechanically heterogeneous aortic
               valve hydrogel scaffolds. Biofabrication. 2012;4(3): 035005.   38.  Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live
               doi: 10.1088/1758-5082/4/3/035005                  cells. Eng Regen. 2022;3(3): 292-309.
                                                                  doi: 10.1016/j.engreg.2022.07.002
            25.  Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation
               of  stereolithography  for  the  production  of  microfluidic   39.  Gaudet ID, Shreiber DI. Characterization of methacrylated
               devices. Lab Chip. 2014;14(7): 1294-1301.          type-I collagen as a dynamic, photoactive hydrogel.
               doi: 10.1039/c3lc51360b                            Biointerphases. 2012;7(1): 25.
                                                                  doi: 10.1007/s13758-012-0025-y
            26.  Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming
               3D-printing  revolution  in  microfluidics.  Lab Chip.   40.  Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-
               2016;16(10): 1720-1742.                            based cell-laden bioinks compared to methacrylated gelatin
               doi: 10.1039/c6lc00163g                            (GelMA) in digital light processing (DLP) and extrusion
                                                                  bioprinting. Mater Today Bio. 2023;23: 100799.
            27.  Lee  H,  Kim  J,  Choi  Y,  Cho  D-W.  Application  of  gelatin      doi: 10.1016/j.mtbio.2023.100799
               bioinks and cell-printing technology to enhance cell delivery
               capability for 3D liver fibrosis-on-a-chip development.    41.  Khoeini  R, Nosrati H,  Akbarzadeh A,  et al. Natural and
               ACS Biomater Sci Eng. 2020;6(4): 2469-2477.        synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res.
               doi: 10.1021/acsbiomaterials.9b01735               2021;1(8): 2000097.
                                                                  doi: 10.1002/anbr.202000097
            28.  Skardal A, Atala A. Biomaterials for integration with 3-D
               bioprinting. Ann Biomed Eng. 2015;43(3): 730-746.   42.  Shin JH, Kang H-W. The development of gelatin-based bio-
               doi: 10.1007/s10439-014-1207-1                     ink for use in 3D hybrid bioprinting. Int J Prec Eng Manuf.
                                                                  2018;19: 767-771.
            29.  Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting:
               a comprehensive review on cell-laden hydrogels, bioink      doi: 10.1007/s12541-018-0092-1
               formulations, and future perspectives.  Appl  Mater  Today.   43.  Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink
               2020;18: 100479.                                   reinforcement for additive manufacturing: a focused
               doi: 10.1016/j.apmt.2019.100479                    review of emerging strategies.  Adv Mater. 2020;32(1):
                                                                  1902026.
            30.  Murphy SV, Skardal A, Atala A. Evaluation of hydrogels      doi: 10.1002/adma.201902026
               for bio‐printing applications.  J Biomed Mater Res Part A.
               2013;101(1): 272-284.                           44.  Nichol JW, Koshy ST, Bae H,  Hwang CM, Yamanlar S,
               doi: 10.1002/jbm.a.34326                           Khademhosseini A.  Cell-laden microengineered gelatin
            Volume 10 Issue 1 (2024)                        40                          https://doi.org/10.36922/ijb.1972
   43   44   45   46   47   48   49   50   51   52   53