Page 50 - IJB-10-1
P. 50

International Journal of Bioprinting                              Bioprinted organ-on-a-chip with biomaterials




            69.  Carneiro J, Lima R, Campos J, Miranda JM. A microparticle   81.  Xu T, Gregory CA, Molnar P,  et al. Viability and
               blood analogue suspension matching blood rheology. Soft   electrophysiology of neural cell structures generated by
               Matter. 2021;17(14): 3963-3974.                    the inkjet printing method.  Biomaterials. 2006;27(19):
               doi: 10.1039/D1SM00106J                            3580-3588.
                                                                  doi: 10.1016/j.biomaterials.2006.01.048
            70.  Wu X, Kim S-H, Ji C-H, Allen MG. A solid hydraulically
               amplified piezoelectric microvalve. J Micromech Microeng.   82.  Saunders RE, Gough JE, Derby B. Delivery of human
               2011;21(9): 095003.                                fibroblast cells by piezoelectric drop-on-demand inkjet
               doi: 10.1088/0960-1317/21/9/095003                 printing. Biomaterials. 2008;29(2): 193-203.
                                                                  doi: 10.1016/j.biomaterials.2007.09.032
            71.  Rao H-X, Liu F-N, Zhang Z-Y. Preparation and oxygen/
               nitrogen permeability of PDMS crosslinked membrane and   83.  Tasoglu S, Demirci U. Bioprinting for stem cell research.
               PDMS/tetraethoxysilicone hybrid membrane. J Membr Sci.   Trends Biotechnol. 2013;31(1): 10-19.
               2007;303(1-2): 132-139.                            doi: 10.1016/j.tibtech.2012.10.005
               doi: 10.1016/j.memsci.2007.07.002
                                                               84.  Singh  M,  Haverinen  HM,  Dhagat  P,  Jabbour  GE.  Inkjet
            72.  Shrestha J, Ghadiri M, Shanmugavel M,  et al. A rapidly   printing—process  and  its  applications.  Adv  Mater.  22(6):
               prototyped lung-on-a-chip model using 3D-printed molds.   673-685.
               Organs Chip. 2019;1: 100001.                       doi: 10.1002/adma.200901141
               doi: 10.1016/j.ooc.2020.100001
                                                               85.  Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by
            73.  Jung JP, Bhuiyan DB, Ogle BM. Solid organ fabrication:   laser cell printing. Biotechnol Bioeng. 2012;109(7):1855-1863.
               comparison of decellularization to 3D bioprinting. Biomater      doi: 10.1002/bit.24455
               Res. 2016;20: 1-11.                             86.  Yan J, Huang Y, Chrisey DB. Laser-assisted printing of
               doi: 10.1186/s40824-016-0074-2
                                                                  alginate long tubes and annular constructs. Biofabrication.
            74.  Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting   2012;5(1): 015002.
               for engineering complex tissues. Biotechnol Adv. 2016;34(4):      doi: 10.1088/1758-5082/5/1/015002
               422-434.                                        87.  Pages  E,  Rémy  M,  Keriquel  V,  Correa  MM,  Guillotin  B,
               doi: 10.1016/j.biotechadv.2015.12.011
                                                                  Guillemot F. Creation of highly defined mesenchymal
            75.  Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W.   stem cell patterns in three dimensions by laser-assisted
               3D printing of composite tissue  with complex  shape   bioprinting. J Nanotechnol Eng Med. 2015;6(2): 021006.
               applied to ear regeneration.  Biofabrication. 2014;6(2):       doi: 10.1115/1.4031217
               024103.                                         88.  Park JH, Jang J, Lee J-S,  Cho D-W. Three-dimensional
               doi: 10.1088/1758-5082/6/2/024103
                                                                  printing of tissue/organ analogues containing living cells.
            76.  Lee JW, Choi Y-J, Yong W-J, et al. Development of a 3D cell   Ann Biomed Eng. 2017;45: 180-194.
               printed construct considering angiogenesis for liver tissue      doi: 10.1007/s10439-016-1611-9
               engineering. Biofabrication. 2016;8(1): 015007.   89.  Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ,
               doi: 10.1088/1758-5090/8/1/015007
                                                                  Markwald RR. Organ printing: tissue spheroids as building
            77.  Lee H, Yoo JJ, Kang H-W, Cho D-W. Investigation of thermal   blocks. Biomaterials. 2009;30(12): 2164-2174.
               degradation with extrusion-based dispensing modules      doi: 10.1016/j.biomaterials.2008.12.084
               for 3D bioprinting technology.  Biofabrication. 2016;8(1):   90.  Kim BS, Ahn M, Cho W-W,  Gao G, Jang J, Cho D-W.
               015011.                                            Engineering  of  diseased  human  skin  equivalent using
               doi: 10.1088/1758-5090/8/1/015011
                                                                  3D cell printing for representing pathophysiological
            78.  Tan Y, Richards DJ, Trusk TC, et al. 3D printing facilitated   hallmarks of type 2 diabetes in vitro. Biomaterials. 2021;272:
               scaffold-free  tissue  unit  fabrication.  Biofabrication.   120776.
               2014;6(2): 024111.                                 doi: 10.1016/j.biomaterials.2021.120776
               doi: 10.1088/1758-5082/6/2/024111
                                                               91.  Anada T, Pan C-C, Stahl AM,  et al. Vascularized bone-
            79.  Cheng E, Yu H, Ahmadi A,  Cheung KC. Investigation   mimetic hydrogel constructs by 3D bioprinting to promote
               of the hydrodynamic response of cells in drop on   osteogenesis and angiogenesis.  Int  J  Mol  Sci. 2019;20(5):
               demand  piezoelectric  inkjet  nozzles.  Biofabrication.   1096.
               2016;8(1):015008.                                  doi: 10.3390/ijms20051096
               doi: 10.1088/1758-5090/8/1/015008
                                                               92.  Gao G, Park W, Kim BS, et al. Construction of a novel in
            80.  Cui  X,  Dean  D,  Ruggeri  ZM,  Boland  T.  Cell  damage   vitro atherosclerotic model from geometry‐tunable artery
               evaluation of thermal inkjet printed Chinese hamster ovary   equivalents engineered via in‐bath coaxial cell printing. Adv
               cells. Biotechnol Bioeng. 2010;106(6): 963-969.    Funct Mater. 2021;31(10): 2008878.
               doi: 10.1002/bit.22762                             doi: 10.1002/adfm.202008878


            Volume 10 Issue 1 (2024)                        42                          https://doi.org/10.36922/ijb.1972
   45   46   47   48   49   50   51   52   53   54   55