Page 52 - IJB-10-1
P. 52
International Journal of Bioprinting Bioprinted organ-on-a-chip with biomaterials
117. Gao G, Lee JH, Jang J, et al. Tissue engineered bio‐blood‐ 129. Wang D, Gust M, Ferrell N. Kidney-on-a-chip: mechanical
vessels constructed using a tissue‐specific bioink and 3D stimulation and sensor integration. Sensors. 2022;
coaxial cell printing technique: a novel therapy for ischemic 22(18): 6889.
disease. Adv Funct Mater. 2017;27(33): 1700798. doi: 10.3390/s22186889
doi: 10.1002/adfm.201700798
130. Kim S, Takayama S. Organ-on-a-chip and the kidney. Kidney
118. Hansson GK. Inflammation, atherosclerosis, and coronary Res Clin Pract. 2015;34(3): 165-169.
artery disease. N Engl J Med. 2005;352(16): 1685-1695. doi: 10.1016/j.krcp.2015.08.001
doi: 10.1056/NEJMra043430 131. Cheung KL, Lafayette RA. Renal physiology of pregnancy.
119. Cui H, Zhu W, Huang Y, et al. In vitro and in vivo evaluation Adv Chronic Kidney Dis. 2013;20(3): 209-214.
of 3D bioprinted small-diameter vasculature with smooth doi: 10.1053/j.ackd.2013.01.012
muscle and endothelium. Biofabrication. 2019;12(1): 015004. 132. Fransen MF, Addario G, Bouten CV, Halary F, Moroni
doi: 10.1088/1758-5090/ab402c L, Mota C. Bioprinting of kidney in vitro models: cells,
120. Zhang Y, Kumar P, Lv S, et al. Recent advances in 3D biomaterials, and manufacturing techniques. Essays
bioprinting of vascularized tissues. Mater Des. 2021;199: Biochem. 2021;65(3): 587-602.
109398. doi: 10.1042/EBC20200158
doi: 10.1016/j.matdes.2020.109398 133. Lasli S, Kim H J, Lee K, et al. A human liver‐on‐a‐chip
121. Murugesan K, Anandapandian PA, Sharma SK, Kumar MV. platform for modeling nonalcoholic fatty liver disease.
Comparative evaluation of dimension and surface detail Adv Biosyst. 2019;3(8): 1900104.
accuracy of models produced by three different rapid prototype doi: 10.1002/adbi.201900104
techniques. J Indian Prosthodont Soc. 2012;12:16-20. 134. Tajiri K, Shimizu Y. Liver physiology and liver diseases in
doi: 10.1007/s13191-011-0103-8 the elderly. World J Gastroenterol. 2013;19(46): 8459.
122. Mota C, Camarero-Espinosa S, Baker MB, Wieringa doi: 10.3748/wjg.v19.i46.8459
P, Moroni L. Bioprinting: from tissue and organ 135. Bellentani S. The epidemiology of non‐alcoholic fatty liver
development to in vitro models. Chem Rev. 2020;120(19): disease. Liver Int. 2017;37: 81-84.
10547-10607. doi: 10.1111/liv.13299
doi: 10.1021/acs.chemrev.9b00789
136. Huang D, Gibeley SB, Xu C, et al. Engineering liver
123. Reint G, Rak-Raszewska A, Vainio SJ. Kidney development microtissues for disease modeling and regenerative
and perspectives for organ engineering. Cell Tissue Res. medicine. Adv Funct Mater. 2020;30(44): 1909553.
2017;369: 171-183. doi: 10.1002/adfm.201909553
doi: 10.1007/s00441-017-2616-x
137. Du Y, Li N, Yang H, et al. Mimicking liver sinusoidal
124. Finco DR. Kidney Function. London, United Kingdom: structures and functions using a 3D-configured microfluidic
Elsevier; 1997. chip. Lab Chip. 2017;17(5): 782-794.
doi: 10.1016/B978-012396305-5/50018-X doi: 10.1039/C6LC01374K
125. Singh NK, Kim JY, Lee JY, et al. Coaxial cell printing of a 138. Wisse E, De Zanger R, Charels K, Van Der Smissen P,
human glomerular model: an in vitro glomerular filtration McCuskey RS. The liver sieve: considerations concerning
barrier and its pathophysiology. Biofabrication. 2023;15(2): the structure and function of endothelial fenestrae, the
024101. sinusoidal wall and the space of Disse. Hepatology. 1985;5(4):
doi: 10.1088/1758-5090/acad2c 683-692.
126. King SM, Higgins JW, Nino CR, et al. 3D proximal tubule doi: 10.1002/hep.1840050427
tissues recapitulate key aspects of renal physiology to enable 139. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR.
nephrotoxicity testing. Front Physiol. 2017;8: 123. Enhancing the functional maturity of induced pluripotent
doi: 10.3389/fphys.2017.00123 stem cell–derived human hepatocytes by controlled
presentation of cell–cell interactions in vitro. Hepatology.
127. Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced
vascularization and maturation of kidney organoids in vitro. 2015;61(4): 1370-1381.
Nat Methods. 2019;16(3): 255-262. doi: 10.1002/hep.27621
doi: 10.1038/s41592-019-0325-y 140. Rennert K, Steinborn S, Gröger M, et al. A microfluidically
perfused three dimensional human liver model. Biomaterials.
128. Lawlor KT, Vanslambrouck JM, Higgins JW, et al.
Cellular extrusion bioprinting improves kidney organoid 2015;71: 119-131.
reproducibility and conformation. Nat Mater. 2021;20(2): doi: 10.1016/j.biomaterials.2015.08.043
260-271. 141. Taymour R, Kilian D, Ahlfeld T, Gelinsky M, Lode A.
doi: 10.1038/s41563-020-00853-9 3D bioprinting of hepatocytes: core–shell structured co-
Volume 10 Issue 1 (2024) 44 https://doi.org/10.36922/ijb.1972

