Page 49 - IJB-10-1
P. 49
International Journal of Bioprinting Bioprinted organ-on-a-chip with biomaterials
methacrylate hydrogels. Biomaterials. 2010;31(21): 57. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived
5536-5544. decellularized extracellular matrix: a game changer for bioink
doi: 10.1016/j.biomaterials.2010.03.064 manufacturing? Trends Biotechnol. 2018;36(8):787-805.
doi: 10.1016/j.tibtech.2018.03.003
45. Lee KY, Mooney DJ. Alginate: properties and biomedical
applications. Prog Polym Sci. 2012;37(1): 106-126. 58. Choudhury D, Yee M, Sheng ZLJ, Amirul A, Naing MW.
doi: 10.1016/j.progpolymsci.2011.06.003 Decellularization systems and devices: state-of-the-art. Acta
Biomater. 2020;115: 51-59.
46. Axpe E, Oyen ML. Applications of alginate-based bioinks in doi: 10.1016/j.actbio.2020.07.060
3D bioprinting. Int J Mol Sci. 2016;17(12): 1976.
doi: 10.3390/ijms17121976 59. Kim H, Kang B, Cui X, et al. Light‐activated decellularized
extracellular matrix‐based bioinks for volumetric
47. Jia J, Richards DJ, Pollard S, et al. Engineering alginate tissue analogs at the centimeter scale. Adv Funct Mater.
as bioink for bioprinting. Acta Biomater. 2014;10(10): 2021;31(32): 2011252.
4323-4331. doi: 10.1002/adfm.202011252
doi: 10.1016/j.actbio.2014.06.034
60. Asti A, Gioglio L. Natural and synthetic biodegradable
48. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen- polymers: different scaffolds for cell expansion and tissue
alginate as bioink for three-dimensional (3D) cell printing formation. Int J Artif Organs. 2014;37(3): 187-205.
based cartilage tissue engineering. Mater Sci Eng C. 2018;83: doi: 10.530/ijao.5000307
195-201.
doi: 10.1016/j.msec.2017.09.002 61. Griffin M, Castro N, Bas O, Saifzadeh S, Butler P, Hutmacher
DW. The current versatility of polyurethane three-
49. Othman SA, Soon CF, Ma NL, et al. Alginate-gelatin bioink dimensional printing for biomedical applications. Tissue
for bioprinting of hela spheroids in alginate-gelatin hexagon Eng Part B Rev. 2020;26(3): 272-283.
shaped scaffolds. Polym Bull. 2021;78: 6115-6135. doi: 10.1089/ten.TEB.2019.0224
doi: 10.1007/s00289-020-03421-y
62. Woodruff MA, Hutmacher DW. The return of a forgotten
50. Compaan AM, Christensen K, Huang Y. Inkjet bioprinting polymer—polycaprolactone in the 21st century. Prog Polym
of 3D silk fibroin cellular constructs using sacrificial alginate. Sci. 2010;35(10): 1217-1256.
ACS Biomater Sci Eng. 2017;3(8): 1519-1526. doi: 10.1016/j.progpolymsci.2010.04.002
doi: 10.1021/acsbiomaterials.6b00432
63. Kim BS, Jang J, Chae S, et al. Three-dimensional
51. Gao Q, Kim B-S, Gao G. Advanced strategies for 3D bioprinting of cell-laden constructs with polycaprolactone
bioprinting of tissue and organ analogs using alginate protective layers for using various thermoplastic polymers.
hydrogel bioinks. Mar Drugs. 2021;19(12): 708. Biofabrication. 2016;8(3): 035013.
doi: 10.3390/md19120708 doi: 10.1088/1758-5090/8/3/035013
52. Choi Y-J, Cho D-W, Lee H. Development of silk fibroin 64. Wu W, DeConinck A, Lewis JA. Omnidirectional printing
scaffolds by using indirect 3D-bioprinting technology. of 3D microvascular networks. Adv Mater. 2011;23(24):
Micromachines. 2022;13(1): 43. H178-H183.
doi: 10.3390/mi13010043 doi: 10.1002/adma.201004625
53. Zheng Z, Wu J, Liu M, et al. 3D bioprinting of self‐standing 65. Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting
silk‐based bioink. Adv Healthc Mater. 2018;7(6): 1701026. of 3D convoluted renal proximal tubules on perfusable
doi: 10.1002/adhm.201701026 chips. Sci Rep. 2016;6(1): 34845.
54. Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, doi: 10.1038/srep34845
Kaplan DL. Silk based bioinks for soft tissue reconstruction 66. Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic
using 3-dimensional (3D) printing with in vitro and in vivo M. Beyond polydimethylsiloxane: alternative materials for
assessments. Biomaterials. 2017;117: 105-115. fabrication of organ-on-a-chip devices and microphysiological
doi: 10.1016/j.biomaterials.2016.11.046 systems. ACS Biomater Sci Eng. 2020;7(7): 2880-2899.
55. Pati F, Jang J, Ha D-H, et al. Printing three-dimensional doi: 10.1021/acsbiomaterials.0c00640
tissue analogues with decellularized extracellular matrix 67. Duffy DC, McDonald JC, Schueller OJ, Whitesides
bioink. Nat Commun. 2014;5(1): 3935. GM. Rapid prototyping of microfluidic systems in poly
doi: 10.1038/ncomms4935 (dimethylsiloxane). Anal Chem. 1998;70(23): 4974-4984.
doi: 10.1021/ac980656z
56. Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular
matrix-based bioinks for engineering tissue-and organ- 68. Miranda I, Souza A, Sousa P, et al. Properties and
specific microenvironments. Chem Rev. 2020;120(19): applications of PDMS for biomedical engineering: a review.
10608-10661. J Funct Biomater. 2021;13(1): 2.
doi: 10.1021/acs.chemrev.9b00808 doi: 10.3390/jfb13010002
Volume 10 Issue 1 (2024) 41 https://doi.org/10.36922/ijb.1972

