Page 49 - IJB-10-1
P. 49

International Journal of Bioprinting                              Bioprinted organ-on-a-chip with biomaterials




               methacrylate  hydrogels.  Biomaterials.  2010;31(21):   57.  Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived
               5536-5544.                                         decellularized extracellular matrix: a game changer for bioink
               doi: 10.1016/j.biomaterials.2010.03.064            manufacturing? Trends Biotechnol. 2018;36(8):787-805.
                                                                  doi: 10.1016/j.tibtech.2018.03.003
            45.  Lee KY, Mooney DJ. Alginate: properties and biomedical
               applications. Prog Polym Sci. 2012;37(1): 106-126.   58.  Choudhury D, Yee M, Sheng ZLJ, Amirul A, Naing MW.
               doi: 10.1016/j.progpolymsci.2011.06.003            Decellularization systems and devices: state-of-the-art. Acta
                                                                  Biomater. 2020;115: 51-59.
            46.  Axpe E, Oyen ML. Applications of alginate-based bioinks in      doi: 10.1016/j.actbio.2020.07.060
               3D bioprinting. Int J Mol Sci. 2016;17(12): 1976.
               doi: 10.3390/ijms17121976                       59.  Kim H, Kang B, Cui X, et al. Light‐activated decellularized
                                                                  extracellular  matrix‐based  bioinks  for  volumetric
            47.  Jia J, Richards DJ, Pollard S,  et al. Engineering alginate   tissue  analogs  at  the  centimeter  scale.  Adv Funct Mater.
               as bioink for  bioprinting.  Acta Biomater. 2014;10(10):   2021;31(32): 2011252.
               4323-4331.                                         doi: 10.1002/adfm.202011252
               doi: 10.1016/j.actbio.2014.06.034
                                                               60.  Asti A, Gioglio L. Natural and synthetic biodegradable
            48.  Yang X, Lu Z, Wu H,  Li W, Zheng L, Zhao J. Collagen-  polymers: different scaffolds for cell expansion and tissue
               alginate as bioink for three-dimensional (3D) cell printing   formation. Int J Artif Organs. 2014;37(3): 187-205.
               based cartilage tissue engineering. Mater Sci Eng C. 2018;83:      doi: 10.530/ijao.5000307
               195-201.
               doi: 10.1016/j.msec.2017.09.002                 61.  Griffin M, Castro N, Bas O, Saifzadeh S, Butler P, Hutmacher
                                                                  DW. The current versatility of polyurethane three-
            49.  Othman SA, Soon CF, Ma NL, et al. Alginate-gelatin bioink   dimensional printing for biomedical applications.  Tissue
               for bioprinting of hela spheroids in alginate-gelatin hexagon   Eng Part B Rev. 2020;26(3): 272-283.
               shaped scaffolds. Polym Bull. 2021;78: 6115-6135.      doi: 10.1089/ten.TEB.2019.0224
               doi: 10.1007/s00289-020-03421-y
                                                               62.  Woodruff MA, Hutmacher DW. The return of a forgotten
            50.  Compaan AM, Christensen K, Huang Y. Inkjet bioprinting   polymer—polycaprolactone in the 21st century. Prog Polym
               of 3D silk fibroin cellular constructs using sacrificial alginate.   Sci. 2010;35(10): 1217-1256.
               ACS Biomater Sci Eng. 2017;3(8): 1519-1526.        doi: 10.1016/j.progpolymsci.2010.04.002
               doi: 10.1021/acsbiomaterials.6b00432
                                                               63.  Kim BS, Jang J, Chae S,  et al. Three-dimensional
            51.  Gao Q, Kim B-S, Gao G. Advanced strategies for 3D   bioprinting of cell-laden constructs with polycaprolactone
               bioprinting of tissue and organ analogs using alginate   protective layers for using various thermoplastic polymers.
               hydrogel bioinks. Mar Drugs. 2021;19(12): 708.     Biofabrication. 2016;8(3): 035013.
               doi: 10.3390/md19120708                            doi: 10.1088/1758-5090/8/3/035013
            52.  Choi Y-J, Cho D-W, Lee H. Development of silk fibroin   64.  Wu W, DeConinck A, Lewis JA. Omnidirectional printing
               scaffolds by using indirect 3D-bioprinting technology.   of 3D microvascular  networks.  Adv Mater. 2011;23(24):
               Micromachines. 2022;13(1): 43.                     H178-H183.
               doi: 10.3390/mi13010043                            doi: 10.1002/adma.201004625
            53.  Zheng Z, Wu J, Liu M, et al. 3D bioprinting of self‐standing   65.  Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting
               silk‐based bioink. Adv Healthc Mater. 2018;7(6): 1701026.   of 3D convoluted renal proximal tubules on perfusable
               doi: 10.1002/adhm.201701026                        chips. Sci Rep. 2016;6(1): 34845.
            54.  Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG,      doi: 10.1038/srep34845
               Kaplan DL. Silk based bioinks for soft tissue reconstruction   66.  Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic
               using 3-dimensional (3D) printing with in vitro and in vivo   M. Beyond polydimethylsiloxane: alternative materials for
               assessments. Biomaterials. 2017;117: 105-115.      fabrication of organ-on-a-chip devices and microphysiological
               doi: 10.1016/j.biomaterials.2016.11.046            systems. ACS Biomater Sci Eng. 2020;7(7): 2880-2899.
            55.  Pati F, Jang J, Ha D-H,  et al. Printing three-dimensional      doi: 10.1021/acsbiomaterials.0c00640
               tissue analogues with decellularized extracellular matrix   67.  Duffy  DC,  McDonald  JC,  Schueller  OJ,  Whitesides
               bioink. Nat Commun. 2014;5(1): 3935.               GM. Rapid prototyping of microfluidic systems in poly
               doi: 10.1038/ncomms4935                            (dimethylsiloxane). Anal Chem. 1998;70(23): 4974-4984.
                                                                  doi: 10.1021/ac980656z
            56.  Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular
               matrix-based bioinks for engineering tissue-and organ-  68.  Miranda I, Souza A, Sousa P,  et al. Properties and
               specific microenvironments.  Chem  Rev. 2020;120(19):   applications of PDMS for biomedical engineering: a review.
               10608-10661.                                       J Funct Biomater. 2021;13(1): 2.
               doi: 10.1021/acs.chemrev.9b00808                   doi: 10.3390/jfb13010002



            Volume 10 Issue 1 (2024)                        41                          https://doi.org/10.36922/ijb.1972
   44   45   46   47   48   49   50   51   52   53   54