Page 269 - IJB-10-2
P. 269

International Journal of Bioprinting                                3D bioprinting of boluses for radiotherapy




            in enhancing treatment outcomes for superficial    3.   Lu Y, Song J, Yao X, et al. 3D printing polymer-based bolus
            tumors, providing a reference for the implementation of   used for radiotherapy. Int J Bioprint. 2021;7(4):414.
            personalized medical devices in the field of radiotherapy.     doi: 10.18063/ijb.v7i4.414
                                                               4.   Aras S, Tanzer I O, Ikizceli T. Dosimetric comparison of
            Acknowledgments                                       superflab and specially prepared bolus materials used in

            None.                                                 radiotherapy practice.  Eur J Breast Health. 2020;16(3):
                                                                  167–170.
                                                                  doi: 10.5152/ejbh.2020.5041
            Funding
                                                               5.   Robar JL, Moran K, Allan J, et al. Intrapatient study
            The authors wish to express their gratitude for the support   comparing 3D printed bolus versus standard vinyl gel sheet
            received  from  the  Fundamental  Research  Program   bolus for postmastectomy chest wall radiation therapy. Pract
            of Shanxi Province (Number: 20210302123416), the      Radiat Oncol. 2018;8(4):221–229.
            National Natural Science Foundation of China (Number:      doi: 10.1016/j.prro.2017.12.008
            31870934), and the Central Leading Science and     6.   Khan Y, Villarreal-Barajas JE, Udowicz M, et al. Clinical
            Technology Development Foundation of Shanxi Province   and dosimetric implications of air gaps between bolus
            (Number: YDZJSX20231A064).                            and skin surface during radiation therapy.  J Cancer Ther.
                                                                  2013;04(07):1251–1255.
            Conflict of interest                                  doi: 10.4236/jct.2013.47147
            The authors declare no conflicts of interest.      7.   Zheng Q, Zhao L, Wang J, et al. High-strength and high-
                                                                  toughness  sodium  alginate/polyacrylamide  double
            Author Contributions                                  physically  crosslinked  network  hydrogel  with  superior
                                                                  self-healing and self-recovery properties prepared by a
            Conceptualization: Xiaobo Huang, Jianbo Song, Meiwen An  one-pot method.  Colloids Surf A: Physicochem Eng Asp.
            Formal analysis: Xiaohong Yao                         2020;589:124402.
            Investigation: Guobao Pang, Yannan Xu, Qinying Shi     doi: 10.1016/j.colsurfa.2019.124402
            Methodology: Youjie Rong, Xiaomin Zhang
            Writing – original draft: Ying Lu                  8.   Al-Sudani TA, Biasi G, Wilkinson D, et al. eXaSkin: A novel
                                                                  high-density bolus for 6MV X-rays radiotherapy. Phys Med.
            Writing – review & editing: Jianbo Song, Meiwen An    2020;80:42–46.
            All authors have approved the final version of        doi: 10.1016/j.ejmp.2020.09.002
               the manuscript.
                                                               9.   Obeid JP, Gutkin PM, Lewis J, et al. Volumetric modulated arc
            Ethics approval and consent to participate            therapy and 3-dimensional printed bolus in the treatment of
                                                                  refractory primary cutaneous gamma delta lymphoma of the
            Not applicable.                                       bilateral legs. Pract Radiat Oncol. 2019;9(4):220–225.
                                                                  doi: 10.1016/j.prro.2019.02.016
            Consent for publication                            10.  Baltz  GC, Chi PM,  Wong PF,  et al. Development and
            Not applicable.                                       validation of a 3D‐printed bolus cap for total scalp
                                                                  irradiation. J Appl Clin Med Phys. 2019;20(3):89–96.
            Availability of data                                  doi: 10.1002/acm2.12552
            Data used in this work are available from the corresponding   11.  Zhao Y, Moran K, Yewondwossen M, et al. Clinical
            author upon reasonable request.                       applications of 3-dimensional printing in radiation therapy.
                                                                  Med Dosim. 2017;42(2):150–155.
                                                                  doi: 10.1016/j.meddos.2017.03.001
            References
                                                               12.  Park SY, Choi CH, Park JM, et al. A patient-specific polylactic
            1.   Pugh R, Lloyd K, Collins M, et al. The use of 3D printing   acid bolus made by a 3D printer for breast cancer radiation
               within radiation therapy to improve bolus conformity: A   therapy. PLoS One. 2016;11(12):e0168063.
               literature review. J Radiother Pract. 2017;16(3):319–325.     doi: 10.1371/journal.pone.0168063
               doi: 10.1017/s1460396917000115                  13.  Park JW, Yea JW. Three-dimensional customized bolus
            2.   Wang X, Wang X, Xiang Z, et al. The clinical application of   for intensity-modulated radiotherapy in a patient with
               3D-printed boluses in superficial tumor radiotherapy. Front   Kimura’s disease involving the auricle.  Cancer Radiother.
               Oncol. 2021;11:698773.                             2016;20(3):205–209.
               doi: 10.3389/fonc.2021.698773                      doi: 10.1016/j.canrad.2015.11.003



            Volume 10 Issue 2 (2024)                       261                                doi: 10.36922/ijb.1589
   264   265   266   267   268   269   270   271   272   273   274