Page 270 - IJB-10-2
P. 270

International Journal of Bioprinting                                3D bioprinting of boluses for radiotherapy




            14.  Ricotti R, Ciardo D, Pansini F, et al. Dosimetric   26.  Mau R, Nazir J, John S, et al. Preliminary study on 3D
               characterization of 3D printed bolus at different infill   printing of PEGDA hydrogels for frontal sinus implants
               percentage  for external  photon beam  radiotherapy.  Phys   using digital light processing (DLP). Curr Dir Biomed Eng.
               Med. 2017;39:25–32.                                2019;5(1):249–252.
               doi: 10.1016/j.ejmp.2017.06.004                    doi: 10.1515/cdbme-2019-0063
            15.  Chiu T, Tan J, Brenner M, et al. Three-dimensional printer-  27.  Zhang B, Li S, Hingorani H, et al. Highly stretchable hydrogels
               aided casting of soft, custom silicone boluses (SCSBs)   for UV curing based high-resolution multimaterial 3D
               for head and neck radiation therapy.  Pract Radiat Oncol.   printing. J Mater Chem B. 2018;6(20):3246–3253.
               2018;8(3):e167–e174.                               doi: 10.1039/c8tb00673c
               doi: 10.1016/j.prro.2017.11.001                 28.  Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable
            16.  Park JM, Son J, An HJ, et al. Bio-compatible patient-specific   and tough hydrogels. Nature. 2012;489(7414):133–136.
               elastic bolus for clinical implementation.  Phys Med Biol.      doi: 10.1038/nature11409
               2019;64(10):105006.                             29.  Huang B, Hu R, Xue Z, et al. Continuous liquid interface
               doi: 10.1088/1361-6560/ab1c93                      production of alginate/polyacrylamide hydrogels with
            17.  Kong Y, Yan T, Sun Y, et al. A dosimetric study on the use   supramolecular shape memory properties.  Carbohydr
               of 3D‐printed customized boluses in photon therapy:   Polym. 2020;231:115736.
               A  hydrogel  and  silica  gel  study.  J Appl Clin Med Phys.      doi: 10.1016/j.carbpol.2019.115736
               2019;20(1):348–355.                             30.  Dávila JL, d’Ávila MA. Rheological evaluation of laponite/
               doi: 10.1002/acm2.12489                            alginate inks for 3D extrusion-based printing.  Int J Adv
            18.  Zasadzinski K, Spalek MJ, Rutkowski P. Modern dressings   Manuf Technol. 2018;101(1–4):675–686.
               in prevention and therapy of acute and chronic radiation      doi: 10.1007/s00170-018-2876-y
               dermatitis-A literature review. Pharmaceutics. 2022;14(6).  31.  Xiang Z, Li N, Rong Y, et al. 3D-printed high-toughness
               doi: 10.3390/pharmaceutics14061204                 double  network  hydrogels  via  digital  light  processing.
            19.  Zhao M, Wang C, Xie J, et al. Eco-friendly and scalable   Colloids Surf A: Physicochem Eng Asp. 2022;639:128329.
               synthesis  of  fullerenols  with  high  free  radical  scavenging      doi: 10.1016/j.colsurfa.2022.128329
               ability for skin radioprotection. Small. 2021;17(37):e2102035.  32.  Li  N,  Xiang  Z,  Rong  Y,  et  al.  3D  printing  tannic  acid-
               doi: 10.1002/smll.202102035                        based gels via digital light processing.  Macromol Biosci.
            20.  Fu Z, Naghieh S, Xu C, et al. Printability in extrusion   2022;22(4):e2100455.
               bioprinting. Biofabrication. 2021;13(3).           doi: 10.1002/mabi.202100455
               doi: 10.1088/1758-5090/abe7ab                   33.  Zhu L, Rong Y, Wang Y, et al. DLP printing of tough
            21.  Ng WL, Huang X, Shkolnikov V, et al. Polyvinylpyrrolidone-  organogels for customized wearable sensors. Eur Polym J.
               based bioink: influence of bioink properties  on printing   2023;187:111886.
               performance and cell proliferation during inkjet-based      doi: 10.1016/j.eurpolymj.2023.111886
               bioprinting. Bio-Des Manuf. 2023;6:676–690.     34.  Zhu W, Ma X, Gou M, et al. 3D printing of functional
               doi: 10.1007/s42242-023-00245-3                    biomaterials for tissue engineering.  Curr Opin Biotechnol.
            22.  Xu X, Awad A, Robles-Martinez P, et al. Vat      2016;40:103–112.
               photopolymerization 3D printing for advanced drug      doi: 10.1016/j.copbio.2016.03.014
               delivery and medical device applications. J Control Release.   35.  Axpe E, Oyen M. Applications of alginate-based bioinks in
               2021;329:743–757.                                  3D bioprinting. Int J Mol Sci. 2016;17(12):1976.
               doi: 10.1016/j.jconrel.2020.10.008                 doi: 10.3390/ijms17121976
            23.  Braghiroli  FL, Amaral-Labat  G,  Boss  AFN,  et  al. Tannin   36.  Caprioli M, Roppolo I. 3D-printed self-healing hydrogels
               gels  and  their  carbon  derivatives:  A  review.  Biomolecules.   via Digital Light Processing. Nat Commun. 2021;12(1):2462.
               2019;9(10):587.                                    doi: 10.1038/s41467-021-22802-z
               doi: 10.3390/biom9100587
                                                               37.  Guo J, Suma T, Richardson JJ, et al. Modular assembly of
            24.  Mortezaee K, Najafi M, Farhood B, et al. Resveratrol as   biomaterials using polyphenols as building blocks.  ACS
               an adjuvant for normal tissues protection and tumor   Biomater Sci Eng. 2019;5(11):5578–5596.
               sensitization. Curr Cancer Drug Targets. 2020;20(2):130–145.     doi: 10.1021/ acsbiomaterials.8b01507
               doi: 10.2174/1568009619666191019143539
                                                               38.  Lee J, Yeo M, Kim W, et al. Development of a tannic acid
            25.  Zhou LY, Fu J, He Y. A review of 3D printing technologies   cross-linking process for obtaining 3D porous cell-laden
               for soft polymer materials. Adv Funct Mater. 2020;2000187.  collagen structure. Int J Biol Macromol. 2018;110:497–503.
               doi: 10.1002/adfm.202000187                        doi: 10.1016/j.ijbiomac.2017.10.105



            Volume 10 Issue 2 (2024)                       262                                doi: 10.36922/ijb.1589
   265   266   267   268   269   270   271   272   273   274   275