Page 29 - IJB-10-2
P. 29

International Journal of Bioprinting                                         PEDOT/PSS-based sensors




            18.  Zhang XS, Yang WT Zhang HN, Xie MG. PEDOT:PSS:   30.  Hou SY, Chen HQ, Lv D, et al. Highly conductive inkjet-
               From  conductive  polymers  to  sensors.  Nanotechnol Precis   printed PEDOT:PSS film under cyclic stretching. ACS Appl
               Eng, 2021;4(4):045004.                             Mater Interfaces. 2023;15(23):28503-28515.
               doi: 10.1063/10.0006866                            doi: 10.1021/acsami.3c03378
            19.  Tseghai GB, Mengistie DA, Malengier B, Fante KA,   31.  Rivers G, Austin JS, He YF, et al. Stable large area drop-
               Langenhove LV. PEDOT:PSS-based conductive textiles and   on-demand deposition of a conductive polymer ink
               their applications. Sensors. 2020;20(7):1881.      for 3D-printed electronics, enabled by bio-renewable
               doi: 10.3390/s20071881                             co-solvents. Addit Manuf. 2023;66:103452.
            20.  Zhang WY, Su Z, Zhang XC, Wang WT, Li ZF. Recent      doi: 10.1016/j.addma.2023.103452
               progress  on  PEDOT-based  wearable  bioelectronics.  View.   32.  Cinquino M, Prontera CT, Zizzari A, et al. Effect of surface
               2022;3(5):20220030.                                tension and drying time on inkjet-printed PEDOT:PSS
               doi: 10.1002/VIW.20220030                          for ITO-free OLED devices.  J Sci-Adv Mater Dev.
            21.  Falco  A,  Petrelli  M,  Bezzeccheri  E,Abdelhalim  A,  Lugli   2022;7(1):100394.
               P. Towards 3D-printed organic electronics: Planarization      doi: 10.1016/j.jsamd.2021.09.001
               and spray-deposition of functional layers onto 3D-printed   33.  Doering OM, Vetter C, Alhawwash A, Horn MR, Yoshida K.
               objects. Org Electron. 2016;39:340-347.            Durable scalable 3D SLA-printed cuff electrodes with high
               doi: 10.1016/j.orgel.2016.10.027                   performance carbon plus PEDOT:PSS-based contacts. Artif
            22.  Lee JH, So HY. 3D-printing-assisted flexible pressure sensor   Organs. 2022;46(10):2085-2096.
               with a concentric circle pattern and high sensitivity for      doi: 10.1111/aor.14387
               health monitoring. Microsyst Nanoeng. 2023;9:44.  34.  Bertana V, Scordo G, Parmeggiani M, et al. Rapid
               doi: 10.1038/s41378-023-00509-z                    prototyping of 3D organic electrochemical transistors
            23.  Da Silva TA, Braunger ML, Countinho MAN. 3D-printed   by composite photocurable resin.  Sci Rep. 2020;
               graphene electrodes applied in an impedimetric electronic   10(1):13335.
               tongue for soil analysis. Chemosensors. 2019;7(4):50.      doi: 10.1038/s41598-020-70365-8
               doi: 10.3390/chemosensors7040050                35.  Lopez-Larrea N, Gallastegui A, Lezama L, Criado-Gonzalez
            24.  Wu KB, Kim KW, Kwon JH, Kim JK, Kim SH, Moon HC.   M, Casado N, Mecerreyes D. Fast visible-light 3D printing of
               Direct ink writing of PEDOT:PSS inks for flexible micro-  conductive PEDOT:PSS hydrogels. Macromol Rapid Comm.
               supercapacitors. J Ind Eng Chem. 2023;123:272-277.  2023;26:2300229.
               doi: 10.1016/j.jiec.2023.03.042                    doi: 10.1002/marc.202300229
            25.  Li L, Meng J, Bao XR, Huang Y. Direct-ink-write 3D printing   36.  Ye XL, Wang C, Wang L, Lu BH, Gao FL, Shao D. DLP
               of  programmable  micro-supercapacitors from  MXene-  printing of a flexible micropattern Si/PEDOT:PSS/
               regulating conducting polymer inks.  Adv Energy Mater.   PEG electrode for  lithium-ion batteries.  Chem Comm.
               2023;13 (9):2203683.                               2022;58(55):7642-7645.
               doi: 10.1002/aenm.202203683                        doi: 10.1039/D2CC01626E
            26.  Dominguez-Alfaro A, Gabirondo E, Alegret N. 3D   37.  Park D, Lee S, Kim J. Thermoelectric and mechanical
               printable conducting and biocompatible PEDOT-graft-PLA   properties of PEDOT:PSS-coated Ag2Se nanowire
               copolymers by direct ink writing. Macromol Rapid Comm.   composite fabricated via digital light processing based 3D
               2021;42 (12):2100100.                              printing. Compos Commun. 2022;30:101084.
               doi: 10.1002/marc.202100100                        doi: 10.1016/j.coco.2022.101084
            27.  Thaibunnak A, Pakdee U. Pen-based writing of   38.  Hill IM, Hernandez V, Xu BH. Imparting high conductivity
               functionalized MWCNT-PEDOT:PSS ink on flexible     to 3D printed PEDOT:PSS.  ACS  Appl  Polym  Mater.
               substrate for application in ammonia gas sensor. Suranaree J   2023;5(6):3989-3998.
               Sci Tech. 2022;29(2).                              doi: 10.1021/acsapm.3c00232
            28.  Ovhal MM, Kumar N, Kang JW. 3D direct ink writing   39.  Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, et
               fabrication of high-performance all-solid-state micro-  al. Direct ink writing of PEDOT eutectogels as substrate-
               supercapacitors. Mol Cryst Liq Cryst. 2020;705(1):105-111.  free  dry  electrodes  for  electromyography.  Mater Horiz.
               doi: 10.1080/15421406.2020.1743426                 2023;10(7):2516-2524.
                                                                  doi: 10.1039/D3MH00310H
            29.  Zheng Y, Wang YD, Zhang F, et al. Coagulation bath-assisted
               3D printing of PEDOT:PSS with high resolution and strong   40.  Greco G, Giuri A, Bagheri S, et al. Pedot:PSS/graphene
               substrate  adhesion for bioelectronic  devices.  Adv Mater   oxide (GO) ternary nanocomposites for electrochemical
               Technol-US. 2022;7(7):2101514.                     applications. Molecules. 2023;28(7):2963.
               doi: 10.1002/admt.202101514                        doi: 10.3390/molecules28072963


            Volume 10 Issue 2 (2024)                        21                                doi: 10.36922/ijb.1725
   24   25   26   27   28   29   30   31   32   33   34