Page 29 - IJB-10-2
P. 29
International Journal of Bioprinting PEDOT/PSS-based sensors
18. Zhang XS, Yang WT Zhang HN, Xie MG. PEDOT:PSS: 30. Hou SY, Chen HQ, Lv D, et al. Highly conductive inkjet-
From conductive polymers to sensors. Nanotechnol Precis printed PEDOT:PSS film under cyclic stretching. ACS Appl
Eng, 2021;4(4):045004. Mater Interfaces. 2023;15(23):28503-28515.
doi: 10.1063/10.0006866 doi: 10.1021/acsami.3c03378
19. Tseghai GB, Mengistie DA, Malengier B, Fante KA, 31. Rivers G, Austin JS, He YF, et al. Stable large area drop-
Langenhove LV. PEDOT:PSS-based conductive textiles and on-demand deposition of a conductive polymer ink
their applications. Sensors. 2020;20(7):1881. for 3D-printed electronics, enabled by bio-renewable
doi: 10.3390/s20071881 co-solvents. Addit Manuf. 2023;66:103452.
20. Zhang WY, Su Z, Zhang XC, Wang WT, Li ZF. Recent doi: 10.1016/j.addma.2023.103452
progress on PEDOT-based wearable bioelectronics. View. 32. Cinquino M, Prontera CT, Zizzari A, et al. Effect of surface
2022;3(5):20220030. tension and drying time on inkjet-printed PEDOT:PSS
doi: 10.1002/VIW.20220030 for ITO-free OLED devices. J Sci-Adv Mater Dev.
21. Falco A, Petrelli M, Bezzeccheri E,Abdelhalim A, Lugli 2022;7(1):100394.
P. Towards 3D-printed organic electronics: Planarization doi: 10.1016/j.jsamd.2021.09.001
and spray-deposition of functional layers onto 3D-printed 33. Doering OM, Vetter C, Alhawwash A, Horn MR, Yoshida K.
objects. Org Electron. 2016;39:340-347. Durable scalable 3D SLA-printed cuff electrodes with high
doi: 10.1016/j.orgel.2016.10.027 performance carbon plus PEDOT:PSS-based contacts. Artif
22. Lee JH, So HY. 3D-printing-assisted flexible pressure sensor Organs. 2022;46(10):2085-2096.
with a concentric circle pattern and high sensitivity for doi: 10.1111/aor.14387
health monitoring. Microsyst Nanoeng. 2023;9:44. 34. Bertana V, Scordo G, Parmeggiani M, et al. Rapid
doi: 10.1038/s41378-023-00509-z prototyping of 3D organic electrochemical transistors
23. Da Silva TA, Braunger ML, Countinho MAN. 3D-printed by composite photocurable resin. Sci Rep. 2020;
graphene electrodes applied in an impedimetric electronic 10(1):13335.
tongue for soil analysis. Chemosensors. 2019;7(4):50. doi: 10.1038/s41598-020-70365-8
doi: 10.3390/chemosensors7040050 35. Lopez-Larrea N, Gallastegui A, Lezama L, Criado-Gonzalez
24. Wu KB, Kim KW, Kwon JH, Kim JK, Kim SH, Moon HC. M, Casado N, Mecerreyes D. Fast visible-light 3D printing of
Direct ink writing of PEDOT:PSS inks for flexible micro- conductive PEDOT:PSS hydrogels. Macromol Rapid Comm.
supercapacitors. J Ind Eng Chem. 2023;123:272-277. 2023;26:2300229.
doi: 10.1016/j.jiec.2023.03.042 doi: 10.1002/marc.202300229
25. Li L, Meng J, Bao XR, Huang Y. Direct-ink-write 3D printing 36. Ye XL, Wang C, Wang L, Lu BH, Gao FL, Shao D. DLP
of programmable micro-supercapacitors from MXene- printing of a flexible micropattern Si/PEDOT:PSS/
regulating conducting polymer inks. Adv Energy Mater. PEG electrode for lithium-ion batteries. Chem Comm.
2023;13 (9):2203683. 2022;58(55):7642-7645.
doi: 10.1002/aenm.202203683 doi: 10.1039/D2CC01626E
26. Dominguez-Alfaro A, Gabirondo E, Alegret N. 3D 37. Park D, Lee S, Kim J. Thermoelectric and mechanical
printable conducting and biocompatible PEDOT-graft-PLA properties of PEDOT:PSS-coated Ag2Se nanowire
copolymers by direct ink writing. Macromol Rapid Comm. composite fabricated via digital light processing based 3D
2021;42 (12):2100100. printing. Compos Commun. 2022;30:101084.
doi: 10.1002/marc.202100100 doi: 10.1016/j.coco.2022.101084
27. Thaibunnak A, Pakdee U. Pen-based writing of 38. Hill IM, Hernandez V, Xu BH. Imparting high conductivity
functionalized MWCNT-PEDOT:PSS ink on flexible to 3D printed PEDOT:PSS. ACS Appl Polym Mater.
substrate for application in ammonia gas sensor. Suranaree J 2023;5(6):3989-3998.
Sci Tech. 2022;29(2). doi: 10.1021/acsapm.3c00232
28. Ovhal MM, Kumar N, Kang JW. 3D direct ink writing 39. Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, et
fabrication of high-performance all-solid-state micro- al. Direct ink writing of PEDOT eutectogels as substrate-
supercapacitors. Mol Cryst Liq Cryst. 2020;705(1):105-111. free dry electrodes for electromyography. Mater Horiz.
doi: 10.1080/15421406.2020.1743426 2023;10(7):2516-2524.
doi: 10.1039/D3MH00310H
29. Zheng Y, Wang YD, Zhang F, et al. Coagulation bath-assisted
3D printing of PEDOT:PSS with high resolution and strong 40. Greco G, Giuri A, Bagheri S, et al. Pedot:PSS/graphene
substrate adhesion for bioelectronic devices. Adv Mater oxide (GO) ternary nanocomposites for electrochemical
Technol-US. 2022;7(7):2101514. applications. Molecules. 2023;28(7):2963.
doi: 10.1002/admt.202101514 doi: 10.3390/molecules28072963
Volume 10 Issue 2 (2024) 21 doi: 10.36922/ijb.1725

