Page 31 - IJB-10-2
P. 31

International Journal of Bioprinting                                         PEDOT/PSS-based sensors




               electronics.  J Mater Sci: Mater Electron. 2019;30(22):      doi: 10.1007/s10854-021-07325-z
               19906-19916.                                    76.  Kraft U, Molina-Lopez F, Son D, Bao Z, Murmann B. Ink
               doi: 10.1007/s10854-019-02357-y
                                                                  development and printing of conducting polymers for
            65.  Cruz S, Rocha LA, Viana JC. Piezo-resistive behaviour   intrinsically  stretchable  interconnects  and  circuits.  Adv
               at high strain levels of PEDOT:PSS printed on a flexible   Electron Mater. 2020;6(1):1900681.
               polymeric substrate by a novel surface treatment. J Mater      doi: 10.1002/aelm.201900681
               Sci: Mater Electron. 2017;28(3):2563-2573.      77.  Cheng XY, Peng SQ, Wu LX, Sun QF. 3D-printed stretchable
               doi: 10.1007/s10854-016-5832-3
                                                                  sensor based on double network PHI/PEDOT:PSS hydrogel
            66.  Tetsu Y, Yamagishi K, Kato A, et al. Ultrathin epidermal   annealed with cosolvent of H O and DMSO. Chem Eng J.
                                                                                        2
               strain sensor based on an elastomer nanosheet with an   2023;470:144058.
               inkjet-printed conductive polymer. Appl Phys Express.      doi: 10.1016/j.cej.2023.144058
               2017;10(8):087201.                              78.  Lo LW, Zhao JY, Wan HC, Wang Y, Chakrabartty S, Wang C.
               doi: 10.7567/APEX.10.087201
                                                                  An inkjet-printed PEDOT:PSS-based stretchable conductor
            67.  Kang TK. Inkjet printing of highly sensitive, transparent,   for wearable health monitoring device applications.  ACS
               flexible linear piezoresistive strain sensors.  Coatings.   Appl Mater Interfaces. 2021;13(18):21693-21702.
               2021;11(1):51.                                     doi: 10.1021/acsami.1c00537
               doi: 10.3390/coatings11010051
                                                               79.  Basak I, Nowicki G, Ruttens B, et al. Inkjet printing of
            68.  Li Z, Li YR, Wang ZW, et al. 3D-printable and multifunctional   PEDOT:PSS based conductive patterns for 3D forming
               conductive nanocomposite with tunable mechanics inspired   applications. Polymers. 2020;12(12):2915.
               by sesame candy. Nano Energy. 2023;108:108116.     doi: 10.3390/polym12122915
               doi: 10.1016/j.nanoen.2023.108166
                                                               80.  Shen  ZQ,  Zhang  ZL,  Zhang  NB,  et  al.  2022.  High-
            69.  Lu Y, Yang HR, Diao YF, et al. Solution-processable PEDOT   Stretchability, Ultralow-Hysteresis Conducting Polymer
               particles for coatings of untreated 3D-printed thermoplastics.   Hydrogel Strain Sensors for Soft Machines. Adv Mater, 34
               ACS Appl Mater Interfaces. 2023;15(2):3433-3441.   (32):2203650.
               doi: 10.1021/acsami.2c18328                        doi: 10.1002/adma.202203650
            70.  Jabbar F, Soomro AM, Lee JW, et al. Robust fluidic   81.  Mousavi S, Thai MT, Amjadi M, et al. Unidirectional, highly
               biocompatible strain sensor based on PEDOT:PSS/CNT   linear strain sensors with thickness-engineered conductive
               composite for human-wearable and high-end robotic   films for precision control of soft machines. J Mater Chem
               applications. Sens Mater. 2020;32(12):4077-4093.   A. 2022;10(26):13673-13684.
               doi: 10.18494/SAM.2020.3085                        doi: 10.1039/D2TA02064E
            71.  Mirza F, Sahasrabuddhe RR, Baptist JR, Wijesundara MBJ,   82.  Kim T, Kim D, Joo Y, Park J, Yoon J, Hong Y. Crack
               Lee WH, Popa D. Piezoresistive pressure sensor array   propagation design in transparent polymeric conductive
               for  robotic  skin.  In:  Proceedings  of  the  Sensors  for  Next-  films via carbon nanotube fiber-reinforcement and its
               Generation Robotics III, 98590K; 2016.             application for highly sensitive and mechanically durable
                doi: 10.1117/12.2225411                           strain sensors. Smart Mater Struct. 2019;28(2):025008.
                                                                  doi: 10.1088/1361-665X/aaf0e9
            72.  Das SK, Baptist JR, Sahasrabuddhe R, Le WHH, Popa D.
               Package analysis of 3D-printed piezo-resistive strain gauge   83.  Shao YW, Zhao YL, Liu J, et al. Flexible force sensor with
               sensors. In: Proceedings of the Sensors for Next-Generation   micro-pyramid arrays based on 3D printing.  IEEE Sens.
               Robotics III, 985905; 2016.                        2018;1-4.
               doi: 10.1117/12.2224352                            doi: 10.1109/ICSENS.2018.8589555
            73.  Shao YW, Zhang Q, Zhao Y, et al. Flexible pressure   84.  Nair RR. Glucose sensing and hybrid instrumentation based
               sensor with micro-structure arrays based on PDMS and   on  printed  organic  electrochemical  transistors. Flex Print
               PEDOT:PSS/PUD&CNTs composite film with 3D printing.   Electron. 2020;5(1):015001.
               Materials. 2021;14(21):6499.                       doi: 10.1088/2058-8585/ab63a0
               doi: 10.3390/ma14216499
                                                               85.  Ramli NI, Abd-Wahab MF, Salim WWAW. Characterization
            74.  Karagiorgis X, Ntagios M, Skabara P, Dahiya R. Elastomeric   of enzymatic glucose biosensor in buffer solution, in
               foam-based soft capacitive pressure sensors using direct ink   artificial saliva, and in potassium ferricyanide by linear
               writing. IEEE J Flex Electron. 2023;2(2):175-182.  sweep voltammetry. AIP Conf Proc. 2018;2031(1):020037.
               doi: 10.1109/JFLEX.2023.3264190                    doi: 10.1063/1.5066993
            75.  Khan S, Ali S, Khan A, Bermak A. Developing pressure   86.  Bihar E, Wustoni S, Pappa AM, Salama KN, Baran D, Inal
               sensors from impregnated textile sandwiched in     S. A fully inkjet-printed disposable glucose sensor on paper.
               inkjet-printed electrodes.  J Mater Sci: Mater Electron.   npj Flex Electron. 2018;2(1):30.
               2021;33(1):541-553.                                doi: 10.1038/s41528-018-0044-y

            Volume 10 Issue 2 (2024)                        23                                doi: 10.36922/ijb.1725
   26   27   28   29   30   31   32   33   34   35   36