Page 31 - IJB-10-2
P. 31
International Journal of Bioprinting PEDOT/PSS-based sensors
electronics. J Mater Sci: Mater Electron. 2019;30(22): doi: 10.1007/s10854-021-07325-z
19906-19916. 76. Kraft U, Molina-Lopez F, Son D, Bao Z, Murmann B. Ink
doi: 10.1007/s10854-019-02357-y
development and printing of conducting polymers for
65. Cruz S, Rocha LA, Viana JC. Piezo-resistive behaviour intrinsically stretchable interconnects and circuits. Adv
at high strain levels of PEDOT:PSS printed on a flexible Electron Mater. 2020;6(1):1900681.
polymeric substrate by a novel surface treatment. J Mater doi: 10.1002/aelm.201900681
Sci: Mater Electron. 2017;28(3):2563-2573. 77. Cheng XY, Peng SQ, Wu LX, Sun QF. 3D-printed stretchable
doi: 10.1007/s10854-016-5832-3
sensor based on double network PHI/PEDOT:PSS hydrogel
66. Tetsu Y, Yamagishi K, Kato A, et al. Ultrathin epidermal annealed with cosolvent of H O and DMSO. Chem Eng J.
2
strain sensor based on an elastomer nanosheet with an 2023;470:144058.
inkjet-printed conductive polymer. Appl Phys Express. doi: 10.1016/j.cej.2023.144058
2017;10(8):087201. 78. Lo LW, Zhao JY, Wan HC, Wang Y, Chakrabartty S, Wang C.
doi: 10.7567/APEX.10.087201
An inkjet-printed PEDOT:PSS-based stretchable conductor
67. Kang TK. Inkjet printing of highly sensitive, transparent, for wearable health monitoring device applications. ACS
flexible linear piezoresistive strain sensors. Coatings. Appl Mater Interfaces. 2021;13(18):21693-21702.
2021;11(1):51. doi: 10.1021/acsami.1c00537
doi: 10.3390/coatings11010051
79. Basak I, Nowicki G, Ruttens B, et al. Inkjet printing of
68. Li Z, Li YR, Wang ZW, et al. 3D-printable and multifunctional PEDOT:PSS based conductive patterns for 3D forming
conductive nanocomposite with tunable mechanics inspired applications. Polymers. 2020;12(12):2915.
by sesame candy. Nano Energy. 2023;108:108116. doi: 10.3390/polym12122915
doi: 10.1016/j.nanoen.2023.108166
80. Shen ZQ, Zhang ZL, Zhang NB, et al. 2022. High-
69. Lu Y, Yang HR, Diao YF, et al. Solution-processable PEDOT Stretchability, Ultralow-Hysteresis Conducting Polymer
particles for coatings of untreated 3D-printed thermoplastics. Hydrogel Strain Sensors for Soft Machines. Adv Mater, 34
ACS Appl Mater Interfaces. 2023;15(2):3433-3441. (32):2203650.
doi: 10.1021/acsami.2c18328 doi: 10.1002/adma.202203650
70. Jabbar F, Soomro AM, Lee JW, et al. Robust fluidic 81. Mousavi S, Thai MT, Amjadi M, et al. Unidirectional, highly
biocompatible strain sensor based on PEDOT:PSS/CNT linear strain sensors with thickness-engineered conductive
composite for human-wearable and high-end robotic films for precision control of soft machines. J Mater Chem
applications. Sens Mater. 2020;32(12):4077-4093. A. 2022;10(26):13673-13684.
doi: 10.18494/SAM.2020.3085 doi: 10.1039/D2TA02064E
71. Mirza F, Sahasrabuddhe RR, Baptist JR, Wijesundara MBJ, 82. Kim T, Kim D, Joo Y, Park J, Yoon J, Hong Y. Crack
Lee WH, Popa D. Piezoresistive pressure sensor array propagation design in transparent polymeric conductive
for robotic skin. In: Proceedings of the Sensors for Next- films via carbon nanotube fiber-reinforcement and its
Generation Robotics III, 98590K; 2016. application for highly sensitive and mechanically durable
doi: 10.1117/12.2225411 strain sensors. Smart Mater Struct. 2019;28(2):025008.
doi: 10.1088/1361-665X/aaf0e9
72. Das SK, Baptist JR, Sahasrabuddhe R, Le WHH, Popa D.
Package analysis of 3D-printed piezo-resistive strain gauge 83. Shao YW, Zhao YL, Liu J, et al. Flexible force sensor with
sensors. In: Proceedings of the Sensors for Next-Generation micro-pyramid arrays based on 3D printing. IEEE Sens.
Robotics III, 985905; 2016. 2018;1-4.
doi: 10.1117/12.2224352 doi: 10.1109/ICSENS.2018.8589555
73. Shao YW, Zhang Q, Zhao Y, et al. Flexible pressure 84. Nair RR. Glucose sensing and hybrid instrumentation based
sensor with micro-structure arrays based on PDMS and on printed organic electrochemical transistors. Flex Print
PEDOT:PSS/PUD&CNTs composite film with 3D printing. Electron. 2020;5(1):015001.
Materials. 2021;14(21):6499. doi: 10.1088/2058-8585/ab63a0
doi: 10.3390/ma14216499
85. Ramli NI, Abd-Wahab MF, Salim WWAW. Characterization
74. Karagiorgis X, Ntagios M, Skabara P, Dahiya R. Elastomeric of enzymatic glucose biosensor in buffer solution, in
foam-based soft capacitive pressure sensors using direct ink artificial saliva, and in potassium ferricyanide by linear
writing. IEEE J Flex Electron. 2023;2(2):175-182. sweep voltammetry. AIP Conf Proc. 2018;2031(1):020037.
doi: 10.1109/JFLEX.2023.3264190 doi: 10.1063/1.5066993
75. Khan S, Ali S, Khan A, Bermak A. Developing pressure 86. Bihar E, Wustoni S, Pappa AM, Salama KN, Baran D, Inal
sensors from impregnated textile sandwiched in S. A fully inkjet-printed disposable glucose sensor on paper.
inkjet-printed electrodes. J Mater Sci: Mater Electron. npj Flex Electron. 2018;2(1):30.
2021;33(1):541-553. doi: 10.1038/s41528-018-0044-y
Volume 10 Issue 2 (2024) 23 doi: 10.36922/ijb.1725

