Page 30 - IJB-10-2
P. 30
International Journal of Bioprinting PEDOT/PSS-based sensors
41. Bao P, Lu Y, Tao P, Liu B, Li J, Cui X. 3D printing PEDOT- doi: 10.1016/j.orgel.2017.10.023
CMC-based high areal capacity electrodes for Li-ion 53. Lim S, Park SH, An TK, Lee HS, Kim SH. Electrohydrodynamic
batteries. Ionics. 2021;27(7):2857-2865. printing of poly(3,4-ethylenedioxythiophene):poly(4-
doi: 10.1007/s11581-021-04063-4
styrenesulfonate) electrodes with ratio-optimized surfactant.
42. Yu JW, Tian FJ, Wang W, et al. Design of highly conductive, Rsc Adv. 2016;6(3):2004-2010.
intrinsically stretchable, and 3D printable PEDOT:PSS doi: 10.1039/C5RA19462H
hydrogels via PSS-chain engineering for bioelectronics.
Chem Mater. 2023;35(15):5936-5944. 54. Park SH, Kim J, Park CE. Optimization of
doi: 10.1021/acs.chemmater.3c00844 electrohydrodynamic-printed organic electrodes for
bottom-contact organic thin film transistors. Org Electron.
43. Kye MJ, Cho J, Yu HC, et al. “Drop-on-textile” patternable 2016;38:48-54.
aqueous PEDOT composite ink providing highly stretchable doi: 10.1016/j.orgel.2016.07.040
and wash-resistant electrodes for electronic textiles. Dyes
Pigments. 2018;155:150-158. 55. Chen J, Wu T, Zhang L, Tang C, Yang X. Flexible conductive
doi: 10.1016/j.dyepig.2018.03.024 patterns using electrohydrodynamic jet printing method
based on high-voltage electrostatic focusing lens. Int J Adv
44. Liu J, Garcia J, Leahy LM, et al. 3D printing of multifunctional Manuf Technol. 2023;127:4321-4329.
conductive polymer composite hydrogels. Adv Funct Mater. doi: 10.1007/s00170-023-11833-z
2023;2214196.
doi: 10.1002/adfm.202214196 56. Chang JK, He JK, Lei Q, Li D. Electrohydrodynamic printing
of microscale PEDOT:PSS-PEO features with tunable
45. Fan JX, Montemagno C, Gupta M. 3D printed high conductive/thermal properties. ACS Appl Mater Interfaces.
transconductance organic electrochemical transistors on 2018;10(22):19116-19122.
flexible substrates. Org Electron. 2019;73:122-129. doi: 10.1021/acsami.8b04051
doi: 10.1016/j.orgel.2019.06.012
57. Balasankar A, Anbazhakan K, Arul V, et al. Recent advances
46. Buga C, Viana JC. Optimization of print quality of in the production of pharmaceuticals using selective laser
inkjet printed PEDOT:PSS patterns. Flex Print Electron. sintering. Biomimetics. 2023;8(4):330.
2022;7(4):045004. doi: 10.3390/biomimetics8040330
doi: 10.1088/2058-8585/ac931e
58. Gao BW, Zhao HJ, Peng LQ, Sun Z. A review of research
47. Khalaf AM, Issa HH, Ramírez JL, Mohamed SA. All inkjet- progress in selective laser melting (SLM). Micromachines.
printed temperature sensors based on PEDOT:PSS. IEEE 2023;14(1):57.
Access. 2022;10:61094-61100. doi: 10.3390/mi14010057
doi: 10.1109/ACCESS.2022.3176822
59. Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG.
48. Wang XP, Mu BY, Zhang LW, Zhang X. Drift characteristic Development of 3D printable conductive hydrogel with
analysis of additive manufactured Ag NPs-PEDOT:PSS crystallized PEDOT:PSS for neural tissue engineering.
flexible temperature sensor. Results Eng. 2022;13:100384. Mater Sci Eng: C. 2019;99:582-590.
doi: 10.1016/j.rineng.2022.100384 doi: 10.1016/j.msec.2019.02.008
49. Khalaf AM, Ramirez JL, Mohamed SA, Issa H. Highly 60. Scordo G, Bertana V, Scaltrito L, et al. A novel highly
sensitive interdigitated thermistor based on PEDOT:PSS for electrically conductive composite resin for stereolithography.
human body temperature monitoring. Flex Print Electron. Mater Today Commun. 2019;19:12-17.
2022;7(4):045012. doi: 10.1016/j.mtcomm.2018.12.017
doi: 10.1088/2058-8585/acaabc
61. Zhu H, Hu XC, Liu BH, Chen Z, Qu S. 3D printing of conductive
50. Jung EM, Lee SW, Kim SH. Printed ion-gel transistor using hydrogel-elastomer hybrids for stretchable electronics. ACS
electrohydrodynamic (EHD) jet printing process. Org Appl Mater Interfaces. 2021;13(49):59243-59251.
Electron. 2018;52:123-129. doi: 10.1021/acsami.1c17526
doi: 10.1016/j.orgel.2017.10.013
62. Borghetti M, Serpelloni M, Sardini E. Mechanical
51. Tang X, Kwon HJ, Ye HQ, et al. Enhanced solvent resistance behavior of strain sensors based on PEDOT:PSS and silver
and electrical performance of electrohydrodynamic jet nanoparticles inks deposited on polymer substrate by inkjet
printed PEDOT:PSS composite patterns: Effects of hardeners printing. Sensor Actuat A-Phys. 2016;243:71-80.
on the performance of organic thin-film transistors. Phys
Chem Chem Phys. 2019;21(46):25690-25699. doi: 10.1016/j.sna.2016.03.021
doi: 10.1039/C9CP04864B 63. Wuhao Z, Zhou P, Sun L, Liu L, Zhao MS, Yu H. Flexible
wearable sensor based on graphene/PEDOT:PSS composite
52. Park SH, Kim J, Lee SY, et al. Organic thin-film transistors
with sub-10-micrometer channel length with printed material. Scientia Sinica Technologica. 2019;49(7):851-860.
polymer/carbon nanotube electrodes. Org Electron. 64. Saidina DS, Mariatti M, Zubir, SA, Fontana S, Hérold C.
2018;52:165-171. Performance of graphene hybrid-based ink for flexible
Volume 10 Issue 2 (2024) 22 doi: 10.36922/ijb.1725

