Page 30 - IJB-10-2
P. 30

International Journal of Bioprinting                                         PEDOT/PSS-based sensors




            41.  Bao P, Lu Y, Tao P, Liu B, Li J, Cui X. 3D printing PEDOT-     doi: 10.1016/j.orgel.2017.10.023
               CMC-based high areal capacity electrodes for Li-ion   53.  Lim S, Park SH, An TK, Lee HS, Kim SH. Electrohydrodynamic
               batteries. Ionics. 2021;27(7):2857-2865.           printing  of  poly(3,4-ethylenedioxythiophene):poly(4-
               doi: 10.1007/s11581-021-04063-4
                                                                  styrenesulfonate) electrodes with ratio-optimized surfactant.
            42.  Yu JW, Tian FJ, Wang W, et al. Design of highly conductive,   Rsc Adv. 2016;6(3):2004-2010.
               intrinsically stretchable, and 3D printable PEDOT:PSS      doi: 10.1039/C5RA19462H
               hydrogels via PSS-chain engineering for bioelectronics.
               Chem Mater. 2023;35(15):5936-5944.              54.  Park  SH,  Kim  J,  Park  CE.  Optimization  of
               doi: 10.1021/acs.chemmater.3c00844                 electrohydrodynamic-printed  organic  electrodes  for
                                                                  bottom-contact organic thin film transistors. Org Electron.
            43.  Kye MJ, Cho J, Yu HC, et al. “Drop-on-textile” patternable   2016;38:48-54.
               aqueous PEDOT composite ink providing highly stretchable      doi: 10.1016/j.orgel.2016.07.040
               and wash-resistant electrodes for electronic textiles.  Dyes
               Pigments. 2018;155:150-158.                     55.  Chen J, Wu T, Zhang L, Tang C, Yang X. Flexible conductive
               doi: 10.1016/j.dyepig.2018.03.024                  patterns using electrohydrodynamic jet printing method
                                                                  based on high-voltage electrostatic focusing lens. Int J Adv
            44.  Liu J, Garcia J, Leahy LM, et al. 3D printing of multifunctional   Manuf Technol. 2023;127:4321-4329.
               conductive polymer composite hydrogels. Adv Funct Mater.      doi: 10.1007/s00170-023-11833-z
               2023;2214196.
               doi: 10.1002/adfm.202214196                     56.  Chang JK, He JK, Lei Q, Li D. Electrohydrodynamic printing
                                                                  of microscale PEDOT:PSS-PEO features with tunable
            45.  Fan  JX,  Montemagno  C,  Gupta  M. 3D  printed  high   conductive/thermal properties. ACS Appl Mater Interfaces.
               transconductance organic electrochemical transistors on   2018;10(22):19116-19122.
               flexible substrates. Org Electron. 2019;73:122-129.     doi: 10.1021/acsami.8b04051
               doi: 10.1016/j.orgel.2019.06.012
                                                               57.  Balasankar A, Anbazhakan K, Arul V, et al. Recent advances
            46.  Buga C, Viana JC. Optimization of print quality of   in the production of pharmaceuticals using selective laser
               inkjet printed PEDOT:PSS patterns.  Flex Print Electron.   sintering. Biomimetics. 2023;8(4):330.
               2022;7(4):045004.                                  doi: 10.3390/biomimetics8040330
               doi: 10.1088/2058-8585/ac931e
                                                               58.  Gao BW, Zhao HJ, Peng LQ, Sun Z. A review of research
            47.  Khalaf AM, Issa HH, Ramírez JL, Mohamed SA. All inkjet-  progress in selective laser melting (SLM).  Micromachines.
               printed temperature sensors based on PEDOT:PSS.  IEEE   2023;14(1):57.
               Access. 2022;10:61094-61100.                       doi: 10.3390/mi14010057
               doi: 10.1109/ACCESS.2022.3176822
                                                               59.  Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG.
            48.  Wang XP, Mu BY, Zhang LW, Zhang X. Drift characteristic   Development of 3D printable conductive hydrogel with
               analysis of additive manufactured Ag NPs-PEDOT:PSS   crystallized PEDOT:PSS for neural tissue engineering.
               flexible temperature sensor. Results Eng. 2022;13:100384.  Mater Sci Eng: C. 2019;99:582-590.
               doi: 10.1016/j.rineng.2022.100384                  doi: 10.1016/j.msec.2019.02.008
            49.  Khalaf AM, Ramirez JL, Mohamed SA, Issa H. Highly   60.  Scordo G, Bertana V, Scaltrito L, et al. A novel highly
               sensitive interdigitated thermistor based on PEDOT:PSS for   electrically conductive composite resin for stereolithography.
               human body temperature monitoring. Flex Print Electron.   Mater Today Commun. 2019;19:12-17.
               2022;7(4):045012.                                  doi: 10.1016/j.mtcomm.2018.12.017
               doi: 10.1088/2058-8585/acaabc
                                                               61.  Zhu H, Hu XC, Liu BH, Chen Z, Qu S. 3D printing of conductive
            50.  Jung EM, Lee SW, Kim SH. Printed ion-gel transistor using   hydrogel-elastomer hybrids for stretchable electronics.  ACS
               electrohydrodynamic (EHD) jet printing process. Org   Appl Mater Interfaces. 2021;13(49):59243-59251.
               Electron. 2018;52:123-129.                         doi: 10.1021/acsami.1c17526
               doi: 10.1016/j.orgel.2017.10.013
                                                               62.  Borghetti M, Serpelloni M, Sardini E. Mechanical
            51.  Tang X, Kwon HJ, Ye HQ, et al. Enhanced solvent resistance   behavior of strain sensors based on PEDOT:PSS and silver
               and electrical performance of electrohydrodynamic jet   nanoparticles inks deposited on polymer substrate by inkjet
               printed PEDOT:PSS composite patterns: Effects of hardeners   printing. Sensor Actuat A-Phys. 2016;243:71-80.
               on the performance of organic thin-film transistors.  Phys
               Chem Chem Phys. 2019;21(46):25690-25699.           doi: 10.1016/j.sna.2016.03.021
               doi: 10.1039/C9CP04864B                         63.  Wuhao Z, Zhou P, Sun L, Liu L, Zhao MS, Yu H. Flexible
                                                                  wearable sensor based on graphene/PEDOT:PSS composite
            52.  Park SH, Kim J, Lee SY, et al. Organic thin-film transistors
               with sub-10-micrometer channel length with printed   material. Scientia Sinica Technologica. 2019;49(7):851-860.
               polymer/carbon nanotube electrodes.  Org  Electron.   64.  Saidina DS, Mariatti M, Zubir, SA, Fontana S, Hérold C.
               2018;52:165-171.                                   Performance of graphene hybrid-based ink for flexible

            Volume 10 Issue 2 (2024)                        22                                doi: 10.36922/ijb.1725
   25   26   27   28   29   30   31   32   33   34   35