Page 48 - IJB-3-2
P. 48

A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl

             applications, Vol. 8, San Diego, USA.               human chondrocytes with nanocellulose-alginate bioink for
           3.  Wüst S, Müller R and Hofmann, 2011, Controlled positioning   cartilage tissue engineering applications. Biomacromolecules,
             of cells in biomaterials—Approaches towards 3D tissue print-  vol.16(5): 1489–1496.
             ing. Journal of  Functional Biomaterials, vol.2(3): 119–154.     http://dx.doi.org/10.1021/acs.biomac.5b00188
              http://dx.doi.org/10.3390/jfb2030119             15. Park J Y, Choi J C, Shim J H, et al., 2014, A comparative
           4.  Gu B K, Choi D J, Park S J, et al., 2016, 3-dimensional bio-  study on collagen type I and hyaluronic acid dependent cell
             printing for tissue engineering applications. Biomaterials   behavior for osteochondral tissue bioprinting. Biofabrication,
             Research, vol.20(1): 12.                            vol.6(3): 035004.
              http://dx.doi.org/10.1186/s40824-016-0058-2         http://dx.doi.org/10.1088/1758-5082/6/3/035004
           5.  Murphy S V and Atala A, 2014, 3D bioprinting of tissues and   16. Duan  B,  Hockaday  L A,  Kang  K  H,  et al., 2013, 3D
             organs. Nature Biotechnology, vol.32(8): 773–785.   bioprinting of heterogeneous aortic valve conduits with
              http://dx.doi.org/10.1038/nbt.2958                 alginate/gelatin hydrogels. Journal of Biomedical Materials
           6.  Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and   Research Part A, vol.101A(5): 1255–1264.
             molecular design criteria for 3D printable hydrogels. Chemical      http://dx.doi.org/10.1002/jbm.a.34420
             Review, vol.116(3): 1496–1539.                    17. Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel
              http://dx.doi.org/10.1021/acs.chemrev.5b00303      bioprinting method and system for forming hybrid tissue
           7.  Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties   engineering constructs. Biofabrication, vol.7(4): 045008.
             before, during and after 3D bioprinting. Biofabrication,   http://dx.doi.org/10.1088/1758-5090/7/4/045008
             vol.8(3): 032002.                                 18. Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin-
              http://dx.doi.org/10.1088/1758-5090/8/3/032002     methacryloyl hydrogels: Towards biofabrication-based tissue
           8.  Carrow, J K, et al., 2015, Polymers for bioprinting. In: Atala   repair. Trends in Biotechnology, vol.34(5): 394–407.
             A and Yoo J J (eds), Essentials of 3D Biofabrication and      http://dx.doi.org/10.1016/j.tibtech.2016.01.002
             Translation. Oxford, UK: Academic Press.          19. Wang X, Yan Y, Pan Y, et al., 2006, Generation of three-
           9.  Peppas N A, Hilt JZ, Khademhosseini A, et al., 2006,   dimensional hepatocyte/gelatin structures with rapid proto-
             Hydrogels in biology and medicine: From molecular principles   typing system. Tissue Engineering, vol.12(1): 83–90.
             to bionanotechnology. Advanced Materials, vol.18(11): 1345–     http://dx.doi.org/10.1089/ten.2006.12.83
             1360.                                             20. Yan Y, Wang X, Pan Y, et al., 2005, Fabrication of viable
              http://dx.doi.org/10.1002/adma.200501612           tissue-engineered constructs with 3D cell-assembly technique.
           10. Gaetani R, Doevendans P A, Metz C H, et al., 2012, Cardiac   Biomaterials, vol.26(29): 5864–5871.
             tissue engineering using tissue printing technology and human      http://dx.doi.org/10.1016/j.biomaterials.2005.02.027
             cardiac progenitor cells. Biomaterials, vol.33(6): 1782–1790.  21. Zhang T, Yan Y, Wang X, et al., 2007, Three-dimensional
              http://dx.doi.org/10.1016/j.biomaterials.2011.11.003  gelatin and gelatin/hyaluronan hydrogel structures for
           11. Khalil S and Sun W, 2009, Bioprinting endothelial cells with   traumatic brain injury. Journal of Bioactive and Compatible
             alginate for 3D tissue constructs. Journal of Biomechanical    Polymers, vol.22(1): 19–29.
             Engineering, vol.131(11): 111002.                    http://dx.doi.org/10.1177/0883911506074025
              http://dx.doi.org/10.1115/1.3128729              22. Yan Y, Wang X, Xiong Z, et al., 2005, Direct construction of
           12. Brandl F, Sommer F and Goepferich A, 2007, Rational design   a three-dimensional structure with cells and hydrogel. Journal
             of hydrogels for tissue engineering: Impact of physical factors   of Bioactive and Compatible Polymers, vol.20(3): 259–269.
             on cell behavior. Biomaterials, vol.28(2): 134–146.     http://dx.doi.org/10.1177/0883911505053658
              http://dx.doi.org/10.1016/j.biomaterials.2006.09.017  23. Yue K, Trujillo-de Santiago G, Alvarez M M, et al., 2015,
           13. DeForest C A and KS Anseth, 2012, Advances in bioactive   Synthesis, properties, and biomedical applications of gelatin
             hydrogels to probe and direct cell fate. Annual Review of   methacryloyl (GelMA) hydrogels. Biomaterials, vol.73: 254–
             Chemical and Biomolecular Engineering, vol.3: 421–444.  271.
              http://dx.doi.org/10.1146/annurev-chembioeng-062011-08094      http://dx.doi.org/10.1016/j.biomaterials.2015.08.045
             5                                                 24. Schuurman W, Levett P A, Pot M W, et al., 2013, Gelatin-
           14. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting   methacrylamide hydrogels as potential biomaterials for

           136                         International Journal of Bioprinting (2017)–Volume 3, Issue 2
   43   44   45   46   47   48   49   50   51   52   53