Page 48 - IJB-3-2
P. 48
A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl
applications, Vol. 8, San Diego, USA. human chondrocytes with nanocellulose-alginate bioink for
3. Wüst S, Müller R and Hofmann, 2011, Controlled positioning cartilage tissue engineering applications. Biomacromolecules,
of cells in biomaterials—Approaches towards 3D tissue print- vol.16(5): 1489–1496.
ing. Journal of Functional Biomaterials, vol.2(3): 119–154. http://dx.doi.org/10.1021/acs.biomac.5b00188
http://dx.doi.org/10.3390/jfb2030119 15. Park J Y, Choi J C, Shim J H, et al., 2014, A comparative
4. Gu B K, Choi D J, Park S J, et al., 2016, 3-dimensional bio- study on collagen type I and hyaluronic acid dependent cell
printing for tissue engineering applications. Biomaterials behavior for osteochondral tissue bioprinting. Biofabrication,
Research, vol.20(1): 12. vol.6(3): 035004.
http://dx.doi.org/10.1186/s40824-016-0058-2 http://dx.doi.org/10.1088/1758-5082/6/3/035004
5. Murphy S V and Atala A, 2014, 3D bioprinting of tissues and 16. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D
organs. Nature Biotechnology, vol.32(8): 773–785. bioprinting of heterogeneous aortic valve conduits with
http://dx.doi.org/10.1038/nbt.2958 alginate/gelatin hydrogels. Journal of Biomedical Materials
6. Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and Research Part A, vol.101A(5): 1255–1264.
molecular design criteria for 3D printable hydrogels. Chemical http://dx.doi.org/10.1002/jbm.a.34420
Review, vol.116(3): 1496–1539. 17. Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel
http://dx.doi.org/10.1021/acs.chemrev.5b00303 bioprinting method and system for forming hybrid tissue
7. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties engineering constructs. Biofabrication, vol.7(4): 045008.
before, during and after 3D bioprinting. Biofabrication, http://dx.doi.org/10.1088/1758-5090/7/4/045008
vol.8(3): 032002. 18. Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin-
http://dx.doi.org/10.1088/1758-5090/8/3/032002 methacryloyl hydrogels: Towards biofabrication-based tissue
8. Carrow, J K, et al., 2015, Polymers for bioprinting. In: Atala repair. Trends in Biotechnology, vol.34(5): 394–407.
A and Yoo J J (eds), Essentials of 3D Biofabrication and http://dx.doi.org/10.1016/j.tibtech.2016.01.002
Translation. Oxford, UK: Academic Press. 19. Wang X, Yan Y, Pan Y, et al., 2006, Generation of three-
9. Peppas N A, Hilt JZ, Khademhosseini A, et al., 2006, dimensional hepatocyte/gelatin structures with rapid proto-
Hydrogels in biology and medicine: From molecular principles typing system. Tissue Engineering, vol.12(1): 83–90.
to bionanotechnology. Advanced Materials, vol.18(11): 1345– http://dx.doi.org/10.1089/ten.2006.12.83
1360. 20. Yan Y, Wang X, Pan Y, et al., 2005, Fabrication of viable
http://dx.doi.org/10.1002/adma.200501612 tissue-engineered constructs with 3D cell-assembly technique.
10. Gaetani R, Doevendans P A, Metz C H, et al., 2012, Cardiac Biomaterials, vol.26(29): 5864–5871.
tissue engineering using tissue printing technology and human http://dx.doi.org/10.1016/j.biomaterials.2005.02.027
cardiac progenitor cells. Biomaterials, vol.33(6): 1782–1790. 21. Zhang T, Yan Y, Wang X, et al., 2007, Three-dimensional
http://dx.doi.org/10.1016/j.biomaterials.2011.11.003 gelatin and gelatin/hyaluronan hydrogel structures for
11. Khalil S and Sun W, 2009, Bioprinting endothelial cells with traumatic brain injury. Journal of Bioactive and Compatible
alginate for 3D tissue constructs. Journal of Biomechanical Polymers, vol.22(1): 19–29.
Engineering, vol.131(11): 111002. http://dx.doi.org/10.1177/0883911506074025
http://dx.doi.org/10.1115/1.3128729 22. Yan Y, Wang X, Xiong Z, et al., 2005, Direct construction of
12. Brandl F, Sommer F and Goepferich A, 2007, Rational design a three-dimensional structure with cells and hydrogel. Journal
of hydrogels for tissue engineering: Impact of physical factors of Bioactive and Compatible Polymers, vol.20(3): 259–269.
on cell behavior. Biomaterials, vol.28(2): 134–146. http://dx.doi.org/10.1177/0883911505053658
http://dx.doi.org/10.1016/j.biomaterials.2006.09.017 23. Yue K, Trujillo-de Santiago G, Alvarez M M, et al., 2015,
13. DeForest C A and KS Anseth, 2012, Advances in bioactive Synthesis, properties, and biomedical applications of gelatin
hydrogels to probe and direct cell fate. Annual Review of methacryloyl (GelMA) hydrogels. Biomaterials, vol.73: 254–
Chemical and Biomolecular Engineering, vol.3: 421–444. 271.
http://dx.doi.org/10.1146/annurev-chembioeng-062011-08094 http://dx.doi.org/10.1016/j.biomaterials.2015.08.045
5 24. Schuurman W, Levett P A, Pot M W, et al., 2013, Gelatin-
14. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting methacrylamide hydrogels as potential biomaterials for
136 International Journal of Bioprinting (2017)–Volume 3, Issue 2

