Page 49 - IJB-3-2
P. 49
Miaomiao Zhou, et. al.
fa brication of tissue – engineered cartilage constructs. crylamide for mechanically stiff hydrogels. RSC Advances,
Macromolecular Bioscience, vol.13(5): 551–561. vol.5(128): 106094–106097.
http://dx.doi.org/10.1002/mabi.201200471
http://dx.doi.org/10.1039/C5RA22028A
25. Du Y, Lo E, Ali S, et al., 2008, Directed assembly of cell-laden 34. McDermott M K, Chen T, Williams C M, et al., 2004,
microgels for fabrication of 3D tissue constructs. Proceedings
of the National Academy of Sciences, vol.105(28): 9522–9527. Mechanical properties of biomimetic tissue adhesive based
http://dx.doi.org/10.1073/pnas.0801866105 on the microbial transglutaminase-catalyzed crosslinking of
26. Yeh J, Ling Y, Karp J M, et al., 2006, Micromolding of shape- gelatin. Biomacromolecules, vol.5(4): 1270–1279.
controlled, harvestable cell-laden hydrogels. Biomaterials, http://dx.doi.org/10.1021/bm034529a
vol.27(31): 5391–5398. 35. Wüst S, Godla M E, Müller R, et al., 2014, Tunable hydrogel
http://dx.doi.org/10.1016/j.biomaterials.2006.06.005 composite with two-step processing in combination with
27. Nichol J W, Koshy S T, Bae H, et al., 2010, Cell-laden micro- innovative hardware upgrade for cell-based three-dimensional
engineered gelatin methacrylate hydrogels. Biomaterials,
bioprinting. Acta Biomaterialia, vol.10(2): 630–640.
vol.31(21): 5536–5544.
http://dx.doi.org/10.1016/j.biomaterials.2010.03.064 http://dx.doi.org/10.1016/j.actbio.2013.10.016
28. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 36. Malda J, Visser J, Melchels F P, et al., 2013, 25th anniversary
3D printing of gelatin methacrylamide cell-laden tissue- article: Engineering hydrogels for biofabrication. Advanced
engineered constructs with high cell viability. Biomaterials, Materials, vol.25(36): 5011–5028.
vol.35(1): 49–62. http://dx.doi.org/10.1002/adma.201302042
http://dx.doi.org/10.1016/j.biomaterials.2013.09.078 37. Das S, Pati F, Chameettachal S, et al., 2013, Enhanced
29. Zhao L, Lib X, Zhao J, et al., 2016, A novel smart injectable
hydrogel prepared by microbial transglutaminase and human- redifferentiation of chondrocytes on microperiodic silk/gelatin
like collagen: Its characterization and biocompatibility. Mate scaffolds: Toward tailor-made tissue engineering. Biomacro
rials Science and Engineering: C, vol.68(1): 317–326. molecules, vol.14(2): 311–321.
http://dx.doi.org/10.1016/j.msec.2016.05.108 http://dx.doi.org/10.1021/bm301193t
30. Kieliszek M and Misiewicz A, 2014, Microbial transgluta- 38. Li H, S Liu and L Lin, 2016, Rheological study on 3D print-
minase and its application in the food industry. A review. Folia
ability of alginate hydrogel and effect of graphene oxide.
Microbiologica, vol.59(3): 241–250.
http://dx.doi.org/10.1007/s12223-013-0287-x International Journal of Bioprinting, vol.2(2): 54–66.
31. Williams C G, Malik A N, Kim T K, et al., 2005, Variable http://dx.doi.org/10.18063/IJB.2016.02.007
cytocompatibility of six cell lines with photoinitiators used for 39. Yi J, Kim Y T, Bae H J, et al., 2006, Influence of transgluta-
polymerizing hydrogels and cell encapsulation. Biomaterials, minase-induced cross-linking on properties of fish gelatin
vol.26(11): 1211–1218. films. Journal of Food Science, vol.71(9): E376–E383.
http://dx.doi.org/10.1016/j.biomaterials.2004.04.024 http://dx.doi.org/10.1111/j.1750-3841.2006.00191.x
32. Shirahama H, Lee BH, Tan LP, et al., 2016, Precise tuning 40. Bae H J, Darby D O, Kimmel R M, et al., 2009, Effects of
of facile one-pot gelatin methacryloyl (GeLMA) synthesis.
Scientific Reports, vol.6: 31036. transglutaminase-induced cross-linking on properties of fish
http://dx.doi.org/10.1038/srep31036 gelatin-nanoclay composite film. Food Chemistry, vol.114(1):
33. Lee B H, Shirahama H, Cho N J, et al., 2015, Efficient and 180–189.
controllable synthesis of highly substituted gelatin metha- http://dx.doi.org/10.1016/j.foodchem.2008.09.057
International Journal of Bioprinting (2017)–Volume 3, Issue 2 137

