Page 68 - IJB-3-2
P. 68

Printing amphotericin B on microneedles using matrix-assisted pulsed laser evaporation

             characterization, and toxicity evaluation of amphotericin B–  Staphylococcus aureus colonization. Applied Surface Science,
             loaded gelatin nanoparticles. Nanomedicine, vol.4(3): 252–  vol.336(1): 407–412.
             261.                                                https://dx.doi.org/10.1016/j.apsusc.2015.01.081
              https://dx.doi.org/10.1016/j.nano.2008.03.007    21. Cristescu R, Popescu C, Socol G, et al., 2011, Deposition of
           11. Boehm R D, Miller P R, Schell W A, et al., 2013, Inkjet   antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-
             printing of amphotericin B onto biodegradable microneedles   co-(sebacic anhydride)) 20:80/gentamicin sulfate composite
             using piezoelectric inkjet printing. JOM, vol.65(4): 525–533.   coatings by MAPLE. Applied Surface Science, vol.257(12):
              https://dx.doi.org/10.1007/s11837-013-0574-7       5287–5292.
           12. Boehm R D, Daniels J, Stafslien S, et al., 2015, Polyglycolic   https://dx.doi.org/10.1016/j.apsusc.2010.11.141
             acid microneedles modified with inkjet-deposited antifungal   22. Cristescu R, Popescu C, Dorcioman G, et al., 2013, Anti-
             coatings. Biointerphases, vol.10(1): 011004.        microbial activity of biopolymer-antibiotic thin films fabri-
              https://dx.doi.org/10.1116/1.4913378               cated by advanced pulsed laser methods. Applied Surface
           13. Boehm R D. Jaipan P, Skoog S A, et al., 2016, Inkjet depo-  Science, vol.278: 211–213.
             sition of itraconazole onto poly(glycolic acid) micro needle   https://dx.doi.org/10.1016/j.apsusc.2013.01.062
             arrays. Biointerphases, vol.11(1): 011008.        23. Li X, Gao H, Murphy C J, et al., 2003, Nanoindentation of
              http://dx.doi.org/10.1116/1.4941448                silver nanowires. Nano Letters, vol.3(11): 1495–1498.
           14. Wu P K, Ringeisen B R, Krizman D B, et al., 2003, Laser   https://dx.doi.org/10.1021/nl034525b
             transfer of biomaterials: Matrix-assisted pulsed laser eva-  24. Machekposhti S A, Soltani M, Najafizadeh P, et al., 2017,
             poration (MAPLE) and MAPLE Direct Write. Review of   Biocompatible polymer microneedle for topical/dermal deli-
             Scientific Instruments, vol.74(4): 2546–2557.       very of tranexamic acid. Journal of Controlled Release, vol.
              http://dx.doi.org/10.1063/1.1544081                261: 87–92.
           15. Schmidmaier G, Wildemann B, Stemberger A, et al., 2001,   https://dx.doi.org/10.1016/j.jconrel.2017.06.016
             Biodegradable poly(ᴅ,ʟ-Lactide) coating of implants for   25. Capriotti K and Capriotti J A, 2015, Onychomycosis treated
             continuous release of growth factors. Journal of Biomedical   with a dilute povidone-iodine/dimethyl sulfoxide preparation.
             Materials Research (Applied Biomaterials), vol.58(4): 449–  International Medical Case Reports Journal, vol.8: 231–233.
             455.                                                https://dx.doi.org/10.2147/IMCRJ.S90775
              http://dx.doi.org/10.1002/jbm.1040               26. Piqué A, 2011, The matrix-assisted pulsed laser evaporation
           16. Kumar N, Langer R S, Domb A J, 2002, Polyanhydrides: An   (MAPLE) process: Origins and future directions. Applied Phy­
             overview. Advanced Drug Delivery Reviews, vol.54(7): 889–  sics A, vol.105(3): 517–528.
             910.                                                https://dx.doi.org/10.1007/s00339-011-6594-7
              https://dx.doi.org/10.1016/S0169-409X(02)00050-9  27. Bubb D M, McGill R A, Horwitz J S, et al., 2001, Laser-based
           17. Shieh L, Tamada J, Chen I, et al., 1994, Erosion of a   processing of polymer nanocomposites for chemical sensing
             new family of biodegradable polyanhydrides. Journal of   applications. Journal of Applied Physics, vol.89(10): 5739–
             Biomedical Materials Research, vol.28(12): 1465–1475.   5746.
              https://dx.doi.org/10.1002/jbm.820281212           http://dx.doi.org/10.1063/1.1362405
           18. Göpferich A and Tessmar, J, 2002, Polyanhydride degradation   28. Paun I A, Ion V, Moldovan A, et al., 2012, MAPLE deposition
             and erosion. Advanced Drug Delivery Reviews, vol.54(7):   of PEG:PLGA thin films. Applied Physcia A, vol.106(1): 197–
             911–931.                                            205.
              https://dx.doi.org/10.1016/S0169-409X(02)00051-0    http://dx.doi.org/10.1007/s00339-011-6548-0
           19. Patz T M, Doraiswamy A, Narayan R J, et al., 2007, Matrix   29. Jovanović Ž, Radosavljević A, Šiljegović M, et al., 2012,
             assisted pulsed laser evaporation of biomaterial thin films.   Structural and optical characteristics of silver/poly(N-vinyl-
             Materials Science and Engineering C, vol.27(3): 514–522.   2-pyrrolidone) nanosystems synthesized by γ-irradiation.
              https://dx.doi.org/10.1016/j.msec.2006.05.039      Radiation Physics and Chemistry, vol.81(11): 1720–1728.
           20. Iordache F, Grumezescu V, Grumezescu AM, et al., 2015,   https://dx.doi.org/10.1016/j.radphyschem.2012.05.019
             Gamma-cyclodextrin/usnic acid thin film fabricated by   30. Majumdar P, Lee E, Gubbins N, et al., 2009, Synthesis and
             MAPLE for improving the resistance of medical surfaces to   antimicrobial activity of quaternary ammonium-functionalized

           156                         International Journal of Bioprinting (2017)–Volume 3, Issue 2
   63   64   65   66   67   68   69   70   71   72