Page 119 - IJB-10-3
P. 119

International Journal of Bioprinting                       3D bioprinting for vascularized skin tissue engineering




            96.  Catros S, Guillotin B, Bačáková M, Fricain J-C, Guillemot   applications of tissue engineered constructs.  IEEE Rev
               F. Effect of laser energy, substrate film thickness and   Biomed Eng. 2012;6:47-62.
               bioink viscosity on viability of endothelial cells printed      doi: 10.1109/rbme.2012.2233468
               by laser-assisted bioprinting.  Appl Surf Sci. 2011;257(12):
               5142-5147.                                      108. Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in
               doi: 10.1016/j.apsusc.2010.11.049                  hydrogel-based vascularized tissues for tissue repair and
                                                                  drug screening. Bioact Mater. 2022;9:198-220.
            97.  Magalhães LSS, Santos FEP, Elias CdMV, et al. Printing 3D      doi: 10.1016/j.bioactmat.2021.07.005
               hydrogel structures employing low-cost stereolithography
               technology. J Funct Biomater. 2020;11(1):12.    109. Bedell ML, Navara AM, Du Y, Zhang S, Mikos AG.
               doi: 10.3390/jfb11010012                           Polymeric systems for bioprinting. Chem Rev. 2020;120(19):
                                                                  10744-10792.
            98.  Choi KY, Ajiteru O, Hong H, et al. A digital light      doi: 10.1021/acs.chemrev.9b00834
               processing 3D-printed artificial skin model and full-
               thickness wound models using silk fibroin bioink.  Acta   110. Nyström A, Bruckner‐Tuderman L. Matrix molecules and
               Biomater. 2023;164:159-174.                        skin biology. In: Seminars in Cell & Developmental Biology.
               doi: 10.1016/j.actbio.2023.04.034                  New York: Elsevier; 2019;89:136-146.
                                                                  doi: 10.1016/j.semcdb.2018.07.025
            99.  Zhang G, Zhang Z, Cao G, et al. Engineered dermis loaded
               with confining forces promotes full-thickness wound   111. Wells A, Nuschke A, Yates CC. Skin tissue repair: matrix
               healing by enhancing vascularisation and epithelialisation.   microenvironmental  influences.  Matrix Biol.  2016;
               Acta Biomater. 2023;170:464-478.                   49:25-36.
               doi: 10.1016/j.actbio.2023.08.049                  doi: 10.1016/j.matbio.2015.08.001
            100. Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of   112. Dzobo K, Motaung KSCM, Adesida A. Recent trends in
               mechanically and biologically improved constructs for   decellularized extracellular matrix bioinks for 3D printing:
               cartilage tissue engineering applications.  Biofabrication.   an updated review. Int J Mol Sci. 2019;20(18):4628.
               2012;5(1):015001.                                  doi: 10.3390/ijms20184628
               doi: 10.1088/1758-5082/5/1/015001               113. Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular
            101. Gudapati H, Dey M, Ozbolat I. A comprehensive review   matrix-based bioinks for engineering tissue-and organ-
               on droplet-based bioprinting: past, present and future.   specific  microenvironments.  Chem Rev.  2020;120(19):
               Biomaterials. 2016;102:20-42.                      10608-10661.
               doi: 10.1016/j.biomaterials.2016.06.012            doi: 10.1021/acs.chemrev.9b00808
            102. LaBarge W, Morales A, Pretorius D, Kahn-Krell   114. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived
               AM, Kannappan R, Zhang J. Scaffold-free bioprinter   decellularized extracellular matrix: a game changer for bioink
               utilizing layer-by-layer printing of cellular spheroids.   manufacturing? Trends Biotechnol. 2018;36(8):787-805.
               Micromachines. 2019;10(9):570.                     doi: 10.1016/j.tibtech.2018.03.003
               doi: 10.3390/mi10090570
                                                               115. Kim BS, Kim H, Gao G, Jang J, Cho D-W. Decellularized
            103. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in   extracellular matrix: a step towards the next generation source
               situ formation of planar biomaterials and tissues. Lab Chip.   for bioink manufacturing. Biofabrication. 2017;9(3):034104.
               2018;18(10):1440-1451.                             doi: 10.1088/1758-5090/aa7e98
               doi: 10.1039/c7lc01236e
                                                               116. Kim BS, Kwon YW, Kong J-S, et al. 3D cell printing of in
            104. Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting of   vitro stabilized skin model and in vivo pre-vascularized skin
               skin: a state-of-the-art review on modelling, materials, and   patch using tissue-specific extracellular matrix bioink: A
               processes. Biofabrication. 2016;8(3):032001.       step towards advanced skin tissue engineering. Biomaterials.
               doi: 10.1088/1758-5090/8/3/032001                  2018;168:38-53.
            105. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin      doi: 10.1016/j.biomaterials.2018.03.040
               CT. Progress in 3D bioprinting technology for tissue/organ   117. Jorgensen  AM,  Chou  Z,  Gillispie  G,  et  al.  Decellularized
               regenerative engineering. Biomaterials. 2020;226:119536.   skin extracellular matrix (dsECM) improves the physical
               doi: 10.1016/j.biomaterials.2019.119536            and biological properties of fibrinogen hydrogel for skin
            106. Ning  L,  Gil  CJ,  Hwang  B,  et  al.  Biomechanical  factors   bioprinting applications. Nanomaterials. 2020;10(8):1484.
               in three-dimensional tissue bioprinting.  Appl Phys Rev.      doi: 10.3390/nano10081484
               2020;7(4):041319.                               118. Zhang Q, Johnson JA, Dunne LW, et al. Decellularized skin/
               doi: 10.1016/j.biomaterials.2019.119536
                                                                  adipose tissue flap matrix for engineering vascularized
            107. Zorlutuna P, Vrana NE, Khademhosseini A. The expanding   composite soft tissue flaps. Acta Biomater. 2016;35:166-184.
               world  of  tissue  engineering:  the  building  blocks  and  new      doi: 10.1016/j.actbio.2016.02.017


            Volume 10 Issue 3 (2024)                       111                                doi: 10.36922/ijb.1727
   114   115   116   117   118   119   120   121   122   123   124