Page 119 - IJB-10-3
P. 119
International Journal of Bioprinting 3D bioprinting for vascularized skin tissue engineering
96. Catros S, Guillotin B, Bačáková M, Fricain J-C, Guillemot applications of tissue engineered constructs. IEEE Rev
F. Effect of laser energy, substrate film thickness and Biomed Eng. 2012;6:47-62.
bioink viscosity on viability of endothelial cells printed doi: 10.1109/rbme.2012.2233468
by laser-assisted bioprinting. Appl Surf Sci. 2011;257(12):
5142-5147. 108. Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in
doi: 10.1016/j.apsusc.2010.11.049 hydrogel-based vascularized tissues for tissue repair and
drug screening. Bioact Mater. 2022;9:198-220.
97. Magalhães LSS, Santos FEP, Elias CdMV, et al. Printing 3D doi: 10.1016/j.bioactmat.2021.07.005
hydrogel structures employing low-cost stereolithography
technology. J Funct Biomater. 2020;11(1):12. 109. Bedell ML, Navara AM, Du Y, Zhang S, Mikos AG.
doi: 10.3390/jfb11010012 Polymeric systems for bioprinting. Chem Rev. 2020;120(19):
10744-10792.
98. Choi KY, Ajiteru O, Hong H, et al. A digital light doi: 10.1021/acs.chemrev.9b00834
processing 3D-printed artificial skin model and full-
thickness wound models using silk fibroin bioink. Acta 110. Nyström A, Bruckner‐Tuderman L. Matrix molecules and
Biomater. 2023;164:159-174. skin biology. In: Seminars in Cell & Developmental Biology.
doi: 10.1016/j.actbio.2023.04.034 New York: Elsevier; 2019;89:136-146.
doi: 10.1016/j.semcdb.2018.07.025
99. Zhang G, Zhang Z, Cao G, et al. Engineered dermis loaded
with confining forces promotes full-thickness wound 111. Wells A, Nuschke A, Yates CC. Skin tissue repair: matrix
healing by enhancing vascularisation and epithelialisation. microenvironmental influences. Matrix Biol. 2016;
Acta Biomater. 2023;170:464-478. 49:25-36.
doi: 10.1016/j.actbio.2023.08.049 doi: 10.1016/j.matbio.2015.08.001
100. Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of 112. Dzobo K, Motaung KSCM, Adesida A. Recent trends in
mechanically and biologically improved constructs for decellularized extracellular matrix bioinks for 3D printing:
cartilage tissue engineering applications. Biofabrication. an updated review. Int J Mol Sci. 2019;20(18):4628.
2012;5(1):015001. doi: 10.3390/ijms20184628
doi: 10.1088/1758-5082/5/1/015001 113. Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular
101. Gudapati H, Dey M, Ozbolat I. A comprehensive review matrix-based bioinks for engineering tissue-and organ-
on droplet-based bioprinting: past, present and future. specific microenvironments. Chem Rev. 2020;120(19):
Biomaterials. 2016;102:20-42. 10608-10661.
doi: 10.1016/j.biomaterials.2016.06.012 doi: 10.1021/acs.chemrev.9b00808
102. LaBarge W, Morales A, Pretorius D, Kahn-Krell 114. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived
AM, Kannappan R, Zhang J. Scaffold-free bioprinter decellularized extracellular matrix: a game changer for bioink
utilizing layer-by-layer printing of cellular spheroids. manufacturing? Trends Biotechnol. 2018;36(8):787-805.
Micromachines. 2019;10(9):570. doi: 10.1016/j.tibtech.2018.03.003
doi: 10.3390/mi10090570
115. Kim BS, Kim H, Gao G, Jang J, Cho D-W. Decellularized
103. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in extracellular matrix: a step towards the next generation source
situ formation of planar biomaterials and tissues. Lab Chip. for bioink manufacturing. Biofabrication. 2017;9(3):034104.
2018;18(10):1440-1451. doi: 10.1088/1758-5090/aa7e98
doi: 10.1039/c7lc01236e
116. Kim BS, Kwon YW, Kong J-S, et al. 3D cell printing of in
104. Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting of vitro stabilized skin model and in vivo pre-vascularized skin
skin: a state-of-the-art review on modelling, materials, and patch using tissue-specific extracellular matrix bioink: A
processes. Biofabrication. 2016;8(3):032001. step towards advanced skin tissue engineering. Biomaterials.
doi: 10.1088/1758-5090/8/3/032001 2018;168:38-53.
105. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin doi: 10.1016/j.biomaterials.2018.03.040
CT. Progress in 3D bioprinting technology for tissue/organ 117. Jorgensen AM, Chou Z, Gillispie G, et al. Decellularized
regenerative engineering. Biomaterials. 2020;226:119536. skin extracellular matrix (dsECM) improves the physical
doi: 10.1016/j.biomaterials.2019.119536 and biological properties of fibrinogen hydrogel for skin
106. Ning L, Gil CJ, Hwang B, et al. Biomechanical factors bioprinting applications. Nanomaterials. 2020;10(8):1484.
in three-dimensional tissue bioprinting. Appl Phys Rev. doi: 10.3390/nano10081484
2020;7(4):041319. 118. Zhang Q, Johnson JA, Dunne LW, et al. Decellularized skin/
doi: 10.1016/j.biomaterials.2019.119536
adipose tissue flap matrix for engineering vascularized
107. Zorlutuna P, Vrana NE, Khademhosseini A. The expanding composite soft tissue flaps. Acta Biomater. 2016;35:166-184.
world of tissue engineering: the building blocks and new doi: 10.1016/j.actbio.2016.02.017
Volume 10 Issue 3 (2024) 111 doi: 10.36922/ijb.1727

