Page 122 - IJB-10-3
P. 122

International Journal of Bioprinting                       3D bioprinting for vascularized skin tissue engineering




            164. Tremblay P-L, Hudon V, Berthod F, Germain L, Auger FA.   175. Altman AM, Yan Y, Matthias N, et al. IFATS collection:
               Inosculation of tissue-engineered capillaries with the host’s   human adipose-derived stem cells seeded on a silk fibroin-
               vasculature in a reconstructed skin transplanted on mice.   chitosan scaffold enhance wound repair in a murine soft
               Am J Transplant. 2005;5(5):1002-1010.              tissue injury model. Stem Cell. 2009;27(1):250-258.
               doi: 10.1111/j.1600-6143.2005.00790.x              doi: 10.1634/stemcells.2008-0178
            165. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative   176. Gang E, Jeong J, Han S, Yan Q, Jeon C, Kim H. In vitro
               progenitor endothelial cells for angiogenesis.  Science.   endothelial potential of human UC blood-derived
               1997;275(5302):964-966.                            mesenchymal  stem  cells.  Cytotherapy.  2006;8(3):
               doi: 10.1126/science.275.5302.964                  215-227.
            166. Sander AL, Jakob H, Henrich D, et al. Systemic transplantation      doi: 10.1080/14653240600735933
               of progenitor cells accelerates wound epithelialization and   177. Koponen JK, Kekarainen T, Heinonen SE, et al. Umbilical
               neovascularization in the hairless mouse ear wound model.   cord blood–derived progenitor cells enhance muscle
               J Surg Res. 2011;165(1):165-170.                   regeneration in mouse hindlimb ischemia model. Mol Ther.
               doi: 10.1016/j.jss.2009.07.003                     2007;15(12):2172-2177.
            167. Ingram DA, Mead LE, Tanaka H, et al. Identification of      doi: 10.1038/sj.mt.6300302
               a novel hierarchy of endothelial progenitor cells using   178. Wang Z, Zheng L, Lian C, Qi Y, Li W, Wang S. Human
               human peripheral and umbilical cord blood.  Blood.   umbilical cord-derived mesenchymal stem cells relieve hind
               2004;104(9):2752-2760.                             limb ischemia by promoting angiogenesis in mice. Stem Cell
               doi: 10.1182/blood-2004-04-1396                    Dev. 2019;28(20):1384-1397.
            168. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-     doi: 10.1089/scd.2019.0115
               diameter neovessels created using endothelial progenitor   179. Chen X, Yue Z, Winberg PC, Lou Y-R, Beirne S, Wallace GG.
               cells expanded ex vivo. Nat Med. 2001;7(9):1035-1040.   3D bioprinting dermal-like structures using species-specific
               doi: 10.1038/nm0901-1035
                                                                  ulvan. Biomater Sci. 2021;9(7):2424-2438.
            169. Hendrickx B, Verdonck K, Van den Berge S, et al. Integration      doi: 10.1039/d0bm01784a
               of  blood  outgrowth  endothelial  cells  in  dermal  fibroblast   180. Liu P, Shen H, Zhi Y, et al. 3D bioprinting and in vitro study
               sheets promotes full thickness wound healing.  Stem  Cell.
               2010;28(7):1165-1177.                              of bilayered membranous construct with human cells-
               doi: 10.1002/stem.445                              laden alginate/gelatin composite hydrogels. Colloid Surf B.
                                                                  2019;181:1026-1034.
            170. Tiruvannamalai Annamalai R, Rioja AY, Putnam AJ,      doi: 10.1016/j.colsurfb.2019.06.069
               Stegemann JP. Vascular network formation by human
               microvascular endothelial cells in modular fibrin   181. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of
               microtissues. ACS Biomater Sci Eng. 2016;2(11):1914-1925.   human  skin  by  three-dimensional  bioprinting.  Tissue Eng
               doi: 10.1021/acsbiomaterials.6b00274               Part C. 2014;20(6):473-484.
                                                                  doi: 10.1089/ten.tec.2013.0335
            171. Kinnaird T, Stabile E, Burnett M, et al. Marrow-derived
               stromal cells express genes encoding a broad spectrum of   182. Shi Y, Xing T, Zhang H, et al. Tyrosinase-doped bioink for
               arteriogenic cytokines and promote in vitro and in vivo   3D bioprinting of living skin constructs.  Biomed Mater.
               arteriogenesis through paracrine mechanisms.  Circ Res.   2018;13(3):035008.
               2004;94(5):678-685.                                doi: 10.1088/1748-605x/aaa5b6
               doi: 10.1161/01.res.0000118601.37875.ac         183. Huang  S,  Yao  B,  Xie  J,  Fu  X.  3D  bioprinted  extracellular
            172. Yoshikawa T, Mitsuno H, Nonaka I, et al. Wound therapy   matrix mimics facilitate directed differentiation of epithelial
               by marrow mesenchymal cell transplantation. Plast Reconstr   progenitors for sweat gland regeneration.  Acta Biomater.
               Surg. 2008;121(3):860-877.                         2016;32:170-177.
               doi: 10.1097/01.prs.0000299922.96006.24            doi: 10.1016/j.actbio.2015.12.039
            173. Moioli EK, Clark PA, Chen M, et al. Synergistic actions   184. Wang S, Xiong Y, Chen J, et al. Three dimensional printing
               of  hematopoietic and  mesenchymal stem/progenitor   bilayer membrane scaffold promotes wound healing. Front
               cells  in  vascularizing  bioengineered  tissues.  PLoS One.   Bioeng Biotechnol. 2019;7:348.
               2008;3(12):e3922.                                  doi: 10.3389/fbioe.2019.00348
               doi: 10.1371/journal.pone.0003922               185. Zidarič T, Milojević M, Gradišnik L, Stana Kleinschek K,
            174. Liu P, Deng Z, Han S, et al. Tissue‐engineered skin   Maver U, Maver T. Polysaccharide-based bioink formulation
               containing mesenchymal stem cells improves burn wounds.   for 3D bioprinting of an in vitro model of the human dermis.
               Artif Organs. 2008;32(12):925-931.                 Nanomaterials. 2020;10(4):733.
               doi: 10.1111/j.1525-1594.2008.00654.x              doi: 10.3390/nano10040733



            Volume 10 Issue 3 (2024)                       114                                doi: 10.36922/ijb.1727
   117   118   119   120   121   122   123   124   125   126   127