Page 122 - IJB-10-3
P. 122
International Journal of Bioprinting 3D bioprinting for vascularized skin tissue engineering
164. Tremblay P-L, Hudon V, Berthod F, Germain L, Auger FA. 175. Altman AM, Yan Y, Matthias N, et al. IFATS collection:
Inosculation of tissue-engineered capillaries with the host’s human adipose-derived stem cells seeded on a silk fibroin-
vasculature in a reconstructed skin transplanted on mice. chitosan scaffold enhance wound repair in a murine soft
Am J Transplant. 2005;5(5):1002-1010. tissue injury model. Stem Cell. 2009;27(1):250-258.
doi: 10.1111/j.1600-6143.2005.00790.x doi: 10.1634/stemcells.2008-0178
165. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative 176. Gang E, Jeong J, Han S, Yan Q, Jeon C, Kim H. In vitro
progenitor endothelial cells for angiogenesis. Science. endothelial potential of human UC blood-derived
1997;275(5302):964-966. mesenchymal stem cells. Cytotherapy. 2006;8(3):
doi: 10.1126/science.275.5302.964 215-227.
166. Sander AL, Jakob H, Henrich D, et al. Systemic transplantation doi: 10.1080/14653240600735933
of progenitor cells accelerates wound epithelialization and 177. Koponen JK, Kekarainen T, Heinonen SE, et al. Umbilical
neovascularization in the hairless mouse ear wound model. cord blood–derived progenitor cells enhance muscle
J Surg Res. 2011;165(1):165-170. regeneration in mouse hindlimb ischemia model. Mol Ther.
doi: 10.1016/j.jss.2009.07.003 2007;15(12):2172-2177.
167. Ingram DA, Mead LE, Tanaka H, et al. Identification of doi: 10.1038/sj.mt.6300302
a novel hierarchy of endothelial progenitor cells using 178. Wang Z, Zheng L, Lian C, Qi Y, Li W, Wang S. Human
human peripheral and umbilical cord blood. Blood. umbilical cord-derived mesenchymal stem cells relieve hind
2004;104(9):2752-2760. limb ischemia by promoting angiogenesis in mice. Stem Cell
doi: 10.1182/blood-2004-04-1396 Dev. 2019;28(20):1384-1397.
168. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small- doi: 10.1089/scd.2019.0115
diameter neovessels created using endothelial progenitor 179. Chen X, Yue Z, Winberg PC, Lou Y-R, Beirne S, Wallace GG.
cells expanded ex vivo. Nat Med. 2001;7(9):1035-1040. 3D bioprinting dermal-like structures using species-specific
doi: 10.1038/nm0901-1035
ulvan. Biomater Sci. 2021;9(7):2424-2438.
169. Hendrickx B, Verdonck K, Van den Berge S, et al. Integration doi: 10.1039/d0bm01784a
of blood outgrowth endothelial cells in dermal fibroblast 180. Liu P, Shen H, Zhi Y, et al. 3D bioprinting and in vitro study
sheets promotes full thickness wound healing. Stem Cell.
2010;28(7):1165-1177. of bilayered membranous construct with human cells-
doi: 10.1002/stem.445 laden alginate/gelatin composite hydrogels. Colloid Surf B.
2019;181:1026-1034.
170. Tiruvannamalai Annamalai R, Rioja AY, Putnam AJ, doi: 10.1016/j.colsurfb.2019.06.069
Stegemann JP. Vascular network formation by human
microvascular endothelial cells in modular fibrin 181. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of
microtissues. ACS Biomater Sci Eng. 2016;2(11):1914-1925. human skin by three-dimensional bioprinting. Tissue Eng
doi: 10.1021/acsbiomaterials.6b00274 Part C. 2014;20(6):473-484.
doi: 10.1089/ten.tec.2013.0335
171. Kinnaird T, Stabile E, Burnett M, et al. Marrow-derived
stromal cells express genes encoding a broad spectrum of 182. Shi Y, Xing T, Zhang H, et al. Tyrosinase-doped bioink for
arteriogenic cytokines and promote in vitro and in vivo 3D bioprinting of living skin constructs. Biomed Mater.
arteriogenesis through paracrine mechanisms. Circ Res. 2018;13(3):035008.
2004;94(5):678-685. doi: 10.1088/1748-605x/aaa5b6
doi: 10.1161/01.res.0000118601.37875.ac 183. Huang S, Yao B, Xie J, Fu X. 3D bioprinted extracellular
172. Yoshikawa T, Mitsuno H, Nonaka I, et al. Wound therapy matrix mimics facilitate directed differentiation of epithelial
by marrow mesenchymal cell transplantation. Plast Reconstr progenitors for sweat gland regeneration. Acta Biomater.
Surg. 2008;121(3):860-877. 2016;32:170-177.
doi: 10.1097/01.prs.0000299922.96006.24 doi: 10.1016/j.actbio.2015.12.039
173. Moioli EK, Clark PA, Chen M, et al. Synergistic actions 184. Wang S, Xiong Y, Chen J, et al. Three dimensional printing
of hematopoietic and mesenchymal stem/progenitor bilayer membrane scaffold promotes wound healing. Front
cells in vascularizing bioengineered tissues. PLoS One. Bioeng Biotechnol. 2019;7:348.
2008;3(12):e3922. doi: 10.3389/fbioe.2019.00348
doi: 10.1371/journal.pone.0003922 185. Zidarič T, Milojević M, Gradišnik L, Stana Kleinschek K,
174. Liu P, Deng Z, Han S, et al. Tissue‐engineered skin Maver U, Maver T. Polysaccharide-based bioink formulation
containing mesenchymal stem cells improves burn wounds. for 3D bioprinting of an in vitro model of the human dermis.
Artif Organs. 2008;32(12):925-931. Nanomaterials. 2020;10(4):733.
doi: 10.1111/j.1525-1594.2008.00654.x doi: 10.3390/nano10040733
Volume 10 Issue 3 (2024) 114 doi: 10.36922/ijb.1727

