Page 121 - IJB-10-3
P. 121

International Journal of Bioprinting                       3D bioprinting for vascularized skin tissue engineering




               physiologically relevant tissue models in vitro. ACS Biomater   153. Guo R, Xu S, Ma L, Huang A, Gao C. The healing of full-
               Sci Eng. 2020;6(6):3513-3528.                      thickness burns treated by using plasmid DNA encoding
               doi: 10.1021/acsbiomaterials.0c00191               VEGF-165 activated collagen–chitosan dermal equivalents.
                                                                  Biomaterials. 2011;32(4):1019-1031.
            142. Abaci HE, Guo Z, Coffman A, et al. Human skin constructs      doi: 10.1016/j.biomaterials.2010.08.087
               with spatially controlled vasculature using primary
               and iPSC‐derived endothelial cells.  Adv Healthc Mater.   154. Yang Y, Xia T, Chen F, et al. Electrospun fibers with plasmid
               2016;5(14):1800-1807.                              bFGF polyplex  loadings  promote skin wound healing in
               doi: 10.1002/adhm.201500936                        diabetic rats. Mol Pharm. 2012;9(1):48-58.
                                                                  doi: 10.1021/mp200246b
            143. Schneider J, Biedermann T, Widmer D, et al. Matriderm®
               versus Integra®: a comparative experimental study.  Burns.   155. Reckhenrich AK, Hopfner U, Krötz F, et al. Bioactivation of
               2009;35(1):51-57.                                  dermal scaffolds with a non-viral copolymer-protected gene
               doi: 10.1016/j.burns.2008.07.018                   vector. Biomaterials. 2011;32(7):1996-2003.
                                                                  doi: 10.1016/j.biomaterials.2010.11.022
            144.  Choi SW, Zhang Y, MacEwan MR, Xia Y. Neovascularization in
               biodegradable inverse opal scaffolds with uniform and precisely   156. Scherer SS, Pietramaggiori G, Matthews J, et al. Poly-N-
               controlled pore sizes. Adv Healthc Mater. 2013;2(1):145-154.   acetyl glucosamine nanofibers: a new bioactive material
               doi: 10.1002/adhm.201200106                        to enhance diabetic wound healing by cell migration and
                                                                  angiogenesis. Ann Surg. 2009;250(2):322-330.
            145. van Zuijlen PP, Vloemans JF, van Trier AJ, et al. Dermal      doi: 10.1097/sla.0b013e3181ae9d45
               substitution in acute burns and reconstructive surgery: a
               subjective and objective long-term follow-up. Plast Reconstr   157. Zhao S, Li L, Wang H, et al. Wound dressings composed of
               Surg. 2001;108(7):1938-1946.                       copper-doped borate bioactive glass microfibers stimulate
               doi: 10.1097/00006534-200112000-00014              angiogenesis and heal full-thickness skin defects in a rodent
                                                                  model. Biomaterials. 2015;53:379-391.
            146.  Ring A, Langer S, Schaffran A, et al. Enhanced neovascularization      doi: 10.1016/j.biomaterials.2015.02.112
               of dermis substitutes via low-pressure plasma-mediated surface
               activation. Burns. 2010;36(8):1222-1227.        158. Wang  X,  You  C,  Hu  X,  et  al.  The  roles  of  knitted  mesh-
               doi: 10.1016/j.burns.2010.03.002                   reinforced collagen–chitosan hybrid scaffold in the one-step
                                                                  repair of full-thickness skin defects in rats. Acta Biomater.
            147. Shaterian A, Borboa A, Sawada R, et al. Real-time analysis of   2013;9(8):7822-7832.
               the kinetics of angiogenesis and vascular permeability in an      doi: 10.1016/j.actbio.2013.04.017
               animal model of wound healing. Burns. 2009;35(6):811-817.
               doi: 10.1016/j.burns.2008.12.012                159. Sun G, Zhang X, Shen Y-I, et al. Dextran hydrogel scaffolds
                                                                  enhance angiogenic responses and promote complete skin
            148. Supp DM, Boyce ST. Engineered skin substitutes: practices   regeneration during burn wound healing.  Proc Natl Acad
               and potentials. Clin Dermatol. 2005;23(4):403-412.   Sci. 2011;108(52):20976-20981.
               doi: 10.1016/j.clindermatol.2004.07.023            doi: 10.1073/pnas.1115973108
            149. Cam C, Zhu S, Truong NF, Scumpia PO, Segura T. Systematic   160. Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, et al. Tissue
               evaluation of natural scaffolds in cutaneous wound healing.   engineered fetal skin constructs for paediatric burns. Lancet.
               J Mater Chem B. 2015;3(40):7986-7992.              2005;366(9488):840-842.
               doi: 10.1039/c5tb00807g                            doi: 10.1016/s0140-6736(05)67107-3
            150. Griffin M, Naderi N, Kalaskar D, Seifalian A, Butler P. Argon   161. Tonello C, Zavan B, Cortivo R, Brun P, Panfilo S,
               plasma  surface  modification  promotes  the  therapeutic   Abatangelo G. In vitro reconstruction of human dermal
               angiogenesis and tissue formation of tissue-engineered   equivalent enriched with endothelial cells.  Biomaterials.
               scaffolds in vivo by adipose-derived stem cells. Stem Cell Res   2003;24(7):1205-1211.
               Ther. 2019;10:1-14.                                doi: 10.1016/s0142-9612(02)00450-7
               doi: 10.1186/s13287-019-1195-z
                                                               162. Hudon V, Berthod F, Black A, Damour O, Germain L, Auger
            151. Liu Q, Huang Y, Lan Y, et al. Acceleration of skin regeneration   F. A tissue‐engineered endothelialized dermis to study
               in full‐thickness burns by incorporation of bFGF‐loaded   the modulation of angiogenic and angiostatic molecules
               alginate microspheres into a CMCS–PVA hydrogel. J Tissue   on capillary‐like tube formation in vitro.  Br J Dermatol.
               Eng Regener Med. 2017;11(5):1562-1573.             2003;148(6):1094-1104.
               doi: 10.1002/term.2057                             doi: 10.1046/j.1365-2133.2003.05298.x
            152. Guo R, Xu S, Ma L, Huang A, Gao C. Enhanced angiogenesis   163. Black AF, Berthod F, L’Heureux N, Germain L, Auger
               of gene-activated dermal equivalent for treatment of   FA. In vitro reconstruction of a human capillary‐like
               full  thickness  incisional  wounds  in  a  porcine  model.   network in a tissue‐engineered skin equivalent.  FASEB J.
               Biomaterials. 2010;31(28):7308-7320.               1998;12(13):1331-1340.
               doi: 10.1016/j.biomaterials.2010.06.013            doi: 10.1046/j.1365-2133.2003.05298.x


            Volume 10 Issue 3 (2024)                       113                                doi: 10.36922/ijb.1727
   116   117   118   119   120   121   122   123   124   125   126