Page 121 - IJB-10-3
P. 121
International Journal of Bioprinting 3D bioprinting for vascularized skin tissue engineering
physiologically relevant tissue models in vitro. ACS Biomater 153. Guo R, Xu S, Ma L, Huang A, Gao C. The healing of full-
Sci Eng. 2020;6(6):3513-3528. thickness burns treated by using plasmid DNA encoding
doi: 10.1021/acsbiomaterials.0c00191 VEGF-165 activated collagen–chitosan dermal equivalents.
Biomaterials. 2011;32(4):1019-1031.
142. Abaci HE, Guo Z, Coffman A, et al. Human skin constructs doi: 10.1016/j.biomaterials.2010.08.087
with spatially controlled vasculature using primary
and iPSC‐derived endothelial cells. Adv Healthc Mater. 154. Yang Y, Xia T, Chen F, et al. Electrospun fibers with plasmid
2016;5(14):1800-1807. bFGF polyplex loadings promote skin wound healing in
doi: 10.1002/adhm.201500936 diabetic rats. Mol Pharm. 2012;9(1):48-58.
doi: 10.1021/mp200246b
143. Schneider J, Biedermann T, Widmer D, et al. Matriderm®
versus Integra®: a comparative experimental study. Burns. 155. Reckhenrich AK, Hopfner U, Krötz F, et al. Bioactivation of
2009;35(1):51-57. dermal scaffolds with a non-viral copolymer-protected gene
doi: 10.1016/j.burns.2008.07.018 vector. Biomaterials. 2011;32(7):1996-2003.
doi: 10.1016/j.biomaterials.2010.11.022
144. Choi SW, Zhang Y, MacEwan MR, Xia Y. Neovascularization in
biodegradable inverse opal scaffolds with uniform and precisely 156. Scherer SS, Pietramaggiori G, Matthews J, et al. Poly-N-
controlled pore sizes. Adv Healthc Mater. 2013;2(1):145-154. acetyl glucosamine nanofibers: a new bioactive material
doi: 10.1002/adhm.201200106 to enhance diabetic wound healing by cell migration and
angiogenesis. Ann Surg. 2009;250(2):322-330.
145. van Zuijlen PP, Vloemans JF, van Trier AJ, et al. Dermal doi: 10.1097/sla.0b013e3181ae9d45
substitution in acute burns and reconstructive surgery: a
subjective and objective long-term follow-up. Plast Reconstr 157. Zhao S, Li L, Wang H, et al. Wound dressings composed of
Surg. 2001;108(7):1938-1946. copper-doped borate bioactive glass microfibers stimulate
doi: 10.1097/00006534-200112000-00014 angiogenesis and heal full-thickness skin defects in a rodent
model. Biomaterials. 2015;53:379-391.
146. Ring A, Langer S, Schaffran A, et al. Enhanced neovascularization doi: 10.1016/j.biomaterials.2015.02.112
of dermis substitutes via low-pressure plasma-mediated surface
activation. Burns. 2010;36(8):1222-1227. 158. Wang X, You C, Hu X, et al. The roles of knitted mesh-
doi: 10.1016/j.burns.2010.03.002 reinforced collagen–chitosan hybrid scaffold in the one-step
repair of full-thickness skin defects in rats. Acta Biomater.
147. Shaterian A, Borboa A, Sawada R, et al. Real-time analysis of 2013;9(8):7822-7832.
the kinetics of angiogenesis and vascular permeability in an doi: 10.1016/j.actbio.2013.04.017
animal model of wound healing. Burns. 2009;35(6):811-817.
doi: 10.1016/j.burns.2008.12.012 159. Sun G, Zhang X, Shen Y-I, et al. Dextran hydrogel scaffolds
enhance angiogenic responses and promote complete skin
148. Supp DM, Boyce ST. Engineered skin substitutes: practices regeneration during burn wound healing. Proc Natl Acad
and potentials. Clin Dermatol. 2005;23(4):403-412. Sci. 2011;108(52):20976-20981.
doi: 10.1016/j.clindermatol.2004.07.023 doi: 10.1073/pnas.1115973108
149. Cam C, Zhu S, Truong NF, Scumpia PO, Segura T. Systematic 160. Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, et al. Tissue
evaluation of natural scaffolds in cutaneous wound healing. engineered fetal skin constructs for paediatric burns. Lancet.
J Mater Chem B. 2015;3(40):7986-7992. 2005;366(9488):840-842.
doi: 10.1039/c5tb00807g doi: 10.1016/s0140-6736(05)67107-3
150. Griffin M, Naderi N, Kalaskar D, Seifalian A, Butler P. Argon 161. Tonello C, Zavan B, Cortivo R, Brun P, Panfilo S,
plasma surface modification promotes the therapeutic Abatangelo G. In vitro reconstruction of human dermal
angiogenesis and tissue formation of tissue-engineered equivalent enriched with endothelial cells. Biomaterials.
scaffolds in vivo by adipose-derived stem cells. Stem Cell Res 2003;24(7):1205-1211.
Ther. 2019;10:1-14. doi: 10.1016/s0142-9612(02)00450-7
doi: 10.1186/s13287-019-1195-z
162. Hudon V, Berthod F, Black A, Damour O, Germain L, Auger
151. Liu Q, Huang Y, Lan Y, et al. Acceleration of skin regeneration F. A tissue‐engineered endothelialized dermis to study
in full‐thickness burns by incorporation of bFGF‐loaded the modulation of angiogenic and angiostatic molecules
alginate microspheres into a CMCS–PVA hydrogel. J Tissue on capillary‐like tube formation in vitro. Br J Dermatol.
Eng Regener Med. 2017;11(5):1562-1573. 2003;148(6):1094-1104.
doi: 10.1002/term.2057 doi: 10.1046/j.1365-2133.2003.05298.x
152. Guo R, Xu S, Ma L, Huang A, Gao C. Enhanced angiogenesis 163. Black AF, Berthod F, L’Heureux N, Germain L, Auger
of gene-activated dermal equivalent for treatment of FA. In vitro reconstruction of a human capillary‐like
full thickness incisional wounds in a porcine model. network in a tissue‐engineered skin equivalent. FASEB J.
Biomaterials. 2010;31(28):7308-7320. 1998;12(13):1331-1340.
doi: 10.1016/j.biomaterials.2010.06.013 doi: 10.1046/j.1365-2133.2003.05298.x
Volume 10 Issue 3 (2024) 113 doi: 10.36922/ijb.1727

