Page 251 - IJB-10-3
P. 251

International Journal of Bioprinting                        Increased ECM stiffness enhances chemoresistance




            32.  Wei, X., Lou, H., Zhou, D. et al., 2021, TAGLN mediated      doi: 10.1016/j.canlet.2021.08.018
               stiffness-regulated ovarian cancer progression via RhoA/  43.  Kang, Y., Nagaraja, A. S., Armaiz-Pena, G. N. et al., 2016,
               ROCK pathway. J Exp Clin Cancer Res, 40(1):292.    Adrenergic Stimulation of DUSP1 Impairs Chemotherapy
               doi: 10.1186/s13046-021-02091-6
                                                                  Response in Ovarian Cancer. Clin Cancer Res, 22(7):1713-
            33.  Kim, J., Jang, J. & Cho, D. W., 2021, Controlling Cancer   1724.
               Cell Behavior by Improving the Stiffness of Gastric Tissue-     doi: 10.1158/1078-0432.Ccr-15-1275
               Decellularized ECM Bioink With Cellulose Nanoparticles.   44.  Andreoli, M., Persico, M., Kumar, A. et al., 2014,
               Front Bioeng Biotechnol, 9:605819.                 Identification of the first inhibitor of the GBP1:PIM1
               doi: 10.3389/fbioe.2021.605819                     interaction. Implications for the development of a new class
            34.  Tang, M., Tiwari, S. K., Agrawal, K. et al., 2021, Rapid 3D   of anticancer agents against paclitaxel resistant cancer cells.
               Bioprinting of Glioblastoma Model Mimicking Native   J Med Chem, 57(19):7916-7932.
               Biophysical Heterogeneity. Small, 17(15):e2006050.     doi: 10.1021/jm5009902
               doi: 10.1002/smll.202006050                     45.  Xiao, Y., Lai, Y., Yu, Y. et al., 2021, The Exocrine Differentiation
            35.  Yang, X., Wang, G., Huang, X. et al., 2020, RNA-seq reveals   and Proliferation Factor (EXDPF) Gene Promotes Ovarian
               the diverse effects of substrate stiffness on epidermal ovarian   Cancer Tumorigenesis by Up-Regulating DNA Replication
               cancer cells. Aging (Albany NY), 12(20):20493-20511.  Pathway. Front Oncol, 11:669603.
               doi: 10.18632/aging.103906                         doi: 10.3389/fonc.2021.669603
            36.  Pietilä, E. A., Gonzalez-Molina, J., Moyano-Galceran, L. et   46.  Zhang, Y., Qiu, J. G., Jia, X. Y. et al., 2023, METTL3-
               al., 2021, Co-evolution of matrisome and adaptive adhesion   mediated N6-methyladenosine modification and HDAC5/
               dynamics drives ovarian cancer chemoresistance.  Nat   YY1 promote IFFO1 downregulation in tumor development
               Commun, 12(1):3904.                                and chemo-resistance. Cancer Lett, 553:215971.
               doi: 10.1038/s41467-021-24009-8                    doi: 10.1016/j.canlet.2022.215971
            37.  Ouyang, L., Yao, R., Zhao, Y. et al., 2016, Effect of bioink   47.  Zaid, T. M., Yeung, T. L., Thompson, M. S. et al., 2013,
               properties on printability and cell viability for 3D bioplotting   Identification of FGFR4 as a potential therapeutic target
               of embryonic stem cells. Biofabrication, 8(3):035020.  for advanced-stage, high-grade serous ovarian cancer. Clin
               doi: 10.1088/1758-5090/8/3/035020                  Cancer Res, 19(4):809-820.
                                                                  doi: 10.1158/1078-0432.Ccr-12-2736
            38.  Li, C., Jin, B., Sun, H. et al., 2022, Exploring the function of
               stromal cells in cholangiocarcinoma by three-dimensional   48.  Brancato, V., Oliveira, J. M., Correlo, V. M. et al., 2020,
               bioprinting immune microenvironment model.  Front   Could 3D  models of  cancer enhance  drug screening?
               Immunol, 13:941289.                                BIOMATERIALS, 232:119744.
               doi: 10.3389/fimmu.2022.941289                     doi: 10.1016/j.biomaterials.2019.119744
            39.  Singha, B., Gatla, H. R., Manna, S. et al., 2014, Proteasome   49.  Zanoni, M., Cortesi, M., Zamagni, A. et al., 2020, Modeling
               inhibition increases recruitment of IκB kinase β (IKKβ),   neoplastic disease with spheroids and organoids. J Hematol
               S536P-p65, and transcription factor EGR1 to interleukin-8   Oncol, 13(1): 97.
               (IL-8) promoter, resulting in increased IL-8 production in      doi: 10.1186/s13045-020-00931-0
               ovarian cancer cells. J Biol Chem, 289(5):2687-2700.  50.  Fan, Y., Sun, Q., Li, X. et al., 2021, Substrate Stiffness
               doi: 10.1074/jbc.M113.502641                       Modulates the Growth, Phenotype, and Chemoresistance of
            40.  Javellana, M., Eckert, M. A., Heide, J. et al., 2022, Neoadjuvant   Ovarian Cancer Cells. Front Cell Dev Biol, 9:718834.
               Chemotherapy Induces Genomic and Transcriptomic      doi: 10.3389/fcell.2021.718834
               Changes in Ovarian Cancer. Cancer Res, 82(1):169-176.  51.  Paradiso, F., Lenna, S., Gazze, S. A. et al., 2022,
               doi: 10.1158/0008-5472.CAN-21-1467                 Mechanomimetic 3D Scaffolds as a Humanized In Vitro
            41.  du Manoir, S., Delpech, H., Orsetti, B. et  al., 2022, In   Model for Ovarian Cancer. Cells, 11(5).
               high-grade ovarian carcinoma, platinum-sensitive tumor      doi: 10.3390/cells11050824
               recurrence and acquired-resistance derive from quiescent   52.  Barroso, M., Chheda, M. G., Clevers, H. et al., 2022, A
               residual cancer cells that overexpress CRYAB, CEACAM6,   path to translation: How 3D patient tumor avatars enable
               and SOX2. J Pathol, 257(3):367-378.                next generation precision oncology.  CANCER  CELL,
               doi: 10.1002/path.5896                             40(12):1448-1453.
                                                                  doi: 10.1016/j.ccell.2022.09.017
            42.  Yamawaki,  K.,  Mori,  Y.,  Sakai,  H. et al.,  2021,  Integrative
               analyses of gene expression and chemosensitivity of patient-  53.  Kim, J., Koo, B. K. & Knoblich, J. A., 2020, Human organoids:
               derived ovarian cancer spheroids link G6PD-driven redox   model systems for human biology and medicine. Nat Rev
               metabolism to cisplatin chemoresistance.  Cancer Lett,   Mol Cell Biol, 21(10):571-584.
               521:29-38.                                         doi: 10.1038/s41580-020-0259-3



            Volume 10 Issue 3 (2024)                       243                                doi: 10.36922/ijb.1673
   246   247   248   249   250   251   252   253   254   255   256