Page 251 - IJB-10-3
P. 251
International Journal of Bioprinting Increased ECM stiffness enhances chemoresistance
32. Wei, X., Lou, H., Zhou, D. et al., 2021, TAGLN mediated doi: 10.1016/j.canlet.2021.08.018
stiffness-regulated ovarian cancer progression via RhoA/ 43. Kang, Y., Nagaraja, A. S., Armaiz-Pena, G. N. et al., 2016,
ROCK pathway. J Exp Clin Cancer Res, 40(1):292. Adrenergic Stimulation of DUSP1 Impairs Chemotherapy
doi: 10.1186/s13046-021-02091-6
Response in Ovarian Cancer. Clin Cancer Res, 22(7):1713-
33. Kim, J., Jang, J. & Cho, D. W., 2021, Controlling Cancer 1724.
Cell Behavior by Improving the Stiffness of Gastric Tissue- doi: 10.1158/1078-0432.Ccr-15-1275
Decellularized ECM Bioink With Cellulose Nanoparticles. 44. Andreoli, M., Persico, M., Kumar, A. et al., 2014,
Front Bioeng Biotechnol, 9:605819. Identification of the first inhibitor of the GBP1:PIM1
doi: 10.3389/fbioe.2021.605819 interaction. Implications for the development of a new class
34. Tang, M., Tiwari, S. K., Agrawal, K. et al., 2021, Rapid 3D of anticancer agents against paclitaxel resistant cancer cells.
Bioprinting of Glioblastoma Model Mimicking Native J Med Chem, 57(19):7916-7932.
Biophysical Heterogeneity. Small, 17(15):e2006050. doi: 10.1021/jm5009902
doi: 10.1002/smll.202006050 45. Xiao, Y., Lai, Y., Yu, Y. et al., 2021, The Exocrine Differentiation
35. Yang, X., Wang, G., Huang, X. et al., 2020, RNA-seq reveals and Proliferation Factor (EXDPF) Gene Promotes Ovarian
the diverse effects of substrate stiffness on epidermal ovarian Cancer Tumorigenesis by Up-Regulating DNA Replication
cancer cells. Aging (Albany NY), 12(20):20493-20511. Pathway. Front Oncol, 11:669603.
doi: 10.18632/aging.103906 doi: 10.3389/fonc.2021.669603
36. Pietilä, E. A., Gonzalez-Molina, J., Moyano-Galceran, L. et 46. Zhang, Y., Qiu, J. G., Jia, X. Y. et al., 2023, METTL3-
al., 2021, Co-evolution of matrisome and adaptive adhesion mediated N6-methyladenosine modification and HDAC5/
dynamics drives ovarian cancer chemoresistance. Nat YY1 promote IFFO1 downregulation in tumor development
Commun, 12(1):3904. and chemo-resistance. Cancer Lett, 553:215971.
doi: 10.1038/s41467-021-24009-8 doi: 10.1016/j.canlet.2022.215971
37. Ouyang, L., Yao, R., Zhao, Y. et al., 2016, Effect of bioink 47. Zaid, T. M., Yeung, T. L., Thompson, M. S. et al., 2013,
properties on printability and cell viability for 3D bioplotting Identification of FGFR4 as a potential therapeutic target
of embryonic stem cells. Biofabrication, 8(3):035020. for advanced-stage, high-grade serous ovarian cancer. Clin
doi: 10.1088/1758-5090/8/3/035020 Cancer Res, 19(4):809-820.
doi: 10.1158/1078-0432.Ccr-12-2736
38. Li, C., Jin, B., Sun, H. et al., 2022, Exploring the function of
stromal cells in cholangiocarcinoma by three-dimensional 48. Brancato, V., Oliveira, J. M., Correlo, V. M. et al., 2020,
bioprinting immune microenvironment model. Front Could 3D models of cancer enhance drug screening?
Immunol, 13:941289. BIOMATERIALS, 232:119744.
doi: 10.3389/fimmu.2022.941289 doi: 10.1016/j.biomaterials.2019.119744
39. Singha, B., Gatla, H. R., Manna, S. et al., 2014, Proteasome 49. Zanoni, M., Cortesi, M., Zamagni, A. et al., 2020, Modeling
inhibition increases recruitment of IκB kinase β (IKKβ), neoplastic disease with spheroids and organoids. J Hematol
S536P-p65, and transcription factor EGR1 to interleukin-8 Oncol, 13(1): 97.
(IL-8) promoter, resulting in increased IL-8 production in doi: 10.1186/s13045-020-00931-0
ovarian cancer cells. J Biol Chem, 289(5):2687-2700. 50. Fan, Y., Sun, Q., Li, X. et al., 2021, Substrate Stiffness
doi: 10.1074/jbc.M113.502641 Modulates the Growth, Phenotype, and Chemoresistance of
40. Javellana, M., Eckert, M. A., Heide, J. et al., 2022, Neoadjuvant Ovarian Cancer Cells. Front Cell Dev Biol, 9:718834.
Chemotherapy Induces Genomic and Transcriptomic doi: 10.3389/fcell.2021.718834
Changes in Ovarian Cancer. Cancer Res, 82(1):169-176. 51. Paradiso, F., Lenna, S., Gazze, S. A. et al., 2022,
doi: 10.1158/0008-5472.CAN-21-1467 Mechanomimetic 3D Scaffolds as a Humanized In Vitro
41. du Manoir, S., Delpech, H., Orsetti, B. et al., 2022, In Model for Ovarian Cancer. Cells, 11(5).
high-grade ovarian carcinoma, platinum-sensitive tumor doi: 10.3390/cells11050824
recurrence and acquired-resistance derive from quiescent 52. Barroso, M., Chheda, M. G., Clevers, H. et al., 2022, A
residual cancer cells that overexpress CRYAB, CEACAM6, path to translation: How 3D patient tumor avatars enable
and SOX2. J Pathol, 257(3):367-378. next generation precision oncology. CANCER CELL,
doi: 10.1002/path.5896 40(12):1448-1453.
doi: 10.1016/j.ccell.2022.09.017
42. Yamawaki, K., Mori, Y., Sakai, H. et al., 2021, Integrative
analyses of gene expression and chemosensitivity of patient- 53. Kim, J., Koo, B. K. & Knoblich, J. A., 2020, Human organoids:
derived ovarian cancer spheroids link G6PD-driven redox model systems for human biology and medicine. Nat Rev
metabolism to cisplatin chemoresistance. Cancer Lett, Mol Cell Biol, 21(10):571-584.
521:29-38. doi: 10.1038/s41580-020-0259-3
Volume 10 Issue 3 (2024) 243 doi: 10.36922/ijb.1673

