Page 250 - IJB-10-3
P. 250
International Journal of Bioprinting Increased ECM stiffness enhances chemoresistance
8. Lee, S., Sani, E. S., Spencer, A. R. et al., 2020, Human- 20. Sun, L., Yang, H., Wang, Y. et al., 2020, Application of a
Recombinant-Elastin-Based Bioinks for 3D Bioprinting of 3D Bioprinted Hepatocellular Carcinoma Cell Model in
Vascularized Soft Tissues. Adv Mater, 32(45):e2003915. Antitumor Drug Research. Front Oncol, 10:878.
doi: 10.1002/adma.202003915 doi: 10.3389/fonc.2020.00878
9. Li, C., Jiang, Z. & Yang, H., 2022, Advances in 3D bioprinting 21. Mao, S., He, J., Zhao, Y. et al., 2020, Bioprinting of patient-
technology for liver regeneration. Hepatobiliary Surg Nutr, derived in vitro intrahepatic cholangiocarcinoma tumor
11(6):917-919. model: establishment, evaluation and anti-cancer drug
doi: 10.21037/hbsn-22-531 testing. Biofabrication, 12(4):045014.
doi: 10.1088/1758-5090/aba0c3
10. Zhang, J., Yang, H. & Yang, H., 2022, Highlights of
constructing liver-relevant in vitro models with 3D 22. Xie, F., Sun, L., Pang, Y. et al., 2021, Three-dimensional bio-
bioprinting. Hepatobiliary Surg Nutr, 11(6):896-898. printing of primary human hepatocellular carcinoma for
doi: 10.21037/hbsn-22-486 personalized medicine. BIOMATERIALS, 265:120416.
doi: 10.1016/j.biomaterials.2020.120416
11. Neufeld, L., Yeini, E., Pozzi, S. et al., 2022, 3D bioprinted
cancer models: from basic biology to drug development. Nat 23. Yang, H., Sun, L., Pang, Y. et al., 2021, Three-dimensional
Rev Cancer, 22(12):679-692. bioprinted hepatorganoids prolong survival of mice with
doi: 10.1038/s41568-022-00514-w liver failure. GUT, 70(3):567-574.
doi: 10.1136/gutjnl-2019-319960
12. Tang, M., Xie, Q., Gimple, R. C. et al., 2020, Three-
dimensional bioprinted glioblastoma microenvironments 24. Tebon, P. J., Wang, B., Markowitz, A. L. et al., 2023, Drug
model cellular dependencies and immune interactions. Cell screening at single-organoid resolution via bioprinting and
Res, 30(10):833-853. interferometry. Nat Commun, 14(1):3168.
doi: 10.1038/s41422-020-0338-1 doi: 10.1038/s41467-023-38832-8
13. Park, W., Bae, M., Hwang, M. et al., 2021, 3D Cell-Printed 25. Mazzocchi, A., Soker, S. & Skardal, A., 2019, 3D bioprinting
Hypoxic Cancer-on-a-Chip for Recapitulating Pathologic for high-throughput screening: Drug screening, disease
Progression of Solid Cancer. J Vis Exp, (167). modeling, and precision medicine applications. Appl Phys
doi: 10.3791/61945 Rev, 6(1).
doi: 10.1063/1.5056188
14. Hong, S. & Song, J. M., 2022, 3D bioprinted drug-resistant
breast cancer spheroids for quantitative in situ evaluation of 26. Wang, M., Zhao, J., Zhang, L. et al., 2017, Role of tumor
drug resistance. Acta Biomater, 138:228-239. microenvironment in tumorigenesis. J Cancer, 8(5):761-773.
doi: 10.1016/j.actbio.2021.10.031 doi: 10.7150/jca.17648
15. Mei, Y., He, C., Gao, C. et al., 2021, 3D-Printed Degradable 27. Yang, M., Lu, J., Zhang, G. et al., 2021, CXCL13 shapes
Anti-Tumor Scaffolds for Controllable Drug Delivery. Int J immunoactive tumor microenvironment and enhances the
Bioprint, 7(4):418. efficacy of PD-1 checkpoint blockade in high-grade serous
doi: 10.18063/ijb.v7i4.418 ovarian cancer. J Immunother Cancer, 9(1).
doi: 10.1136/jitc-2020-001136
16. Yi, H. G., Jeong, Y. H., Kim, Y. et al., 2019, A bioprinted
human-glioblastoma-on-a-chip for the identification of 28. Ding, Q., Dong, S., Wang, R. et al., 2020, A nine-gene
patient-specific responses to chemoradiotherapy. Nat signature related to tumor microenvironment predicts
Biomed Eng, 3(7):509-519. overall survival with ovarian cancer. Aging (Albany NY),
doi: 10.1038/s41551-019-0363-x 12(6):4879-4895.
doi: 10.18632/aging.102914
17. Shim, I. K., Yi, H. J., Yi, H. G. et al., 2017, Locally-applied
5-fluorouracil-loaded slow-release patch prevents pancreatic 29. Di Modugno, F., Colosi, C., Trono, P. et al., 2019, 3D models
cancer growth in an orthotopic mouse model. Oncotarget, in the new era of immune oncology: focus on T cells, CAF
8(25):40140-40151. and ECM. J Exp Clin Cancer Res, 38(1):117.
doi: 10.18632/oncotarget.17370 doi: 10.1186/s13046-019-1086-2
18. Hirschhaeuser, F., Menne, H., Dittfeld, C. et al., 2010, 30. Hinshaw, D. C. & Shevde, L. A., 2019, The Tumor
Multicellular tumor spheroids: an underestimated tool is Microenvironment Innately Modulates Cancer Progression.
catching up again. J Biotechnol, 148(1):3-15. Cancer Res, 79(18):4557-4566.
doi: 10.1016/j.jbiotec.2010.01.012 doi: 10.1158/0008-5472.CAN-18-3962
19. Abhinand, C. S., Raju, R., Soumya, S. J. et al., 2016, VEGF-A/ 31. Elhanani, O., Ben-Uri, R. & Keren, L., 2023, Spatial profiling
VEGFR2 signaling network in endothelial cells relevant to technologies illuminate the tumor microenvironment.
angiogenesis. J Cell Commun Signal, 10(4):347-354. CANCER CELL, 41(3):404-420.
doi: 10.1007/s12079-016-0352-8 doi: 10.1016/j.ccell.2023.01.010
Volume 10 Issue 3 (2024) 242 doi: 10.36922/ijb.1673

