Page 250 - IJB-10-3
P. 250

International Journal of Bioprinting                        Increased ECM stiffness enhances chemoresistance




            8.   Lee, S., Sani, E. S., Spencer, A. R. et al., 2020, Human-  20.  Sun,  L.,  Yang,  H.,  Wang,  Y. et al.,  2020,  Application  of  a
               Recombinant-Elastin-Based Bioinks for 3D Bioprinting of   3D Bioprinted Hepatocellular Carcinoma Cell Model in
               Vascularized Soft Tissues. Adv Mater, 32(45):e2003915.  Antitumor Drug Research. Front Oncol, 10:878.
               doi: 10.1002/adma.202003915                        doi: 10.3389/fonc.2020.00878
            9.   Li, C., Jiang, Z. & Yang, H., 2022, Advances in 3D bioprinting   21.  Mao, S., He, J., Zhao, Y. et al., 2020, Bioprinting of patient-
               technology for liver regeneration. Hepatobiliary Surg Nutr,   derived in vitro intrahepatic cholangiocarcinoma tumor
               11(6):917-919.                                     model:  establishment,  evaluation  and  anti-cancer  drug
               doi: 10.21037/hbsn-22-531                          testing. Biofabrication, 12(4):045014.
                                                                  doi: 10.1088/1758-5090/aba0c3
            10.  Zhang, J., Yang, H. & Yang, H., 2022, Highlights of
               constructing liver-relevant in vitro models with 3D   22.  Xie, F., Sun, L., Pang, Y. et al., 2021, Three-dimensional bio-
               bioprinting. Hepatobiliary Surg Nutr, 11(6):896-898.  printing of primary human hepatocellular carcinoma for
               doi: 10.21037/hbsn-22-486                          personalized medicine. BIOMATERIALS, 265:120416.
                                                                  doi: 10.1016/j.biomaterials.2020.120416
            11.  Neufeld, L., Yeini, E., Pozzi, S. et al., 2022, 3D bioprinted
               cancer models: from basic biology to drug development. Nat   23.  Yang, H., Sun, L., Pang, Y. et al., 2021, Three-dimensional
               Rev Cancer, 22(12):679-692.                        bioprinted hepatorganoids prolong survival of mice with
               doi: 10.1038/s41568-022-00514-w                    liver failure. GUT, 70(3):567-574.
                                                                  doi: 10.1136/gutjnl-2019-319960
            12.  Tang, M., Xie, Q., Gimple, R. C. et al., 2020, Three-
               dimensional bioprinted glioblastoma microenvironments   24.  Tebon, P. J., Wang, B., Markowitz, A. L. et al., 2023, Drug
               model cellular dependencies and immune interactions. Cell   screening at single-organoid resolution via bioprinting and
               Res, 30(10):833-853.                               interferometry. Nat Commun, 14(1):3168.
               doi: 10.1038/s41422-020-0338-1                     doi: 10.1038/s41467-023-38832-8
            13.  Park, W., Bae, M., Hwang, M. et al., 2021, 3D Cell-Printed   25.  Mazzocchi, A., Soker, S. & Skardal, A., 2019, 3D bioprinting
               Hypoxic Cancer-on-a-Chip for Recapitulating Pathologic   for high-throughput screening: Drug screening, disease
               Progression of Solid Cancer. J Vis Exp, (167).     modeling, and precision medicine applications. Appl Phys
               doi: 10.3791/61945                                 Rev, 6(1).
                                                                  doi: 10.1063/1.5056188
            14.  Hong, S. & Song, J. M., 2022, 3D bioprinted drug-resistant
               breast cancer spheroids for quantitative in situ evaluation of   26.  Wang,  M.,  Zhao,  J.,  Zhang,  L. et al.,  2017,  Role  of  tumor
               drug resistance. Acta Biomater, 138:228-239.       microenvironment in tumorigenesis. J Cancer, 8(5):761-773.
               doi: 10.1016/j.actbio.2021.10.031                  doi: 10.7150/jca.17648
            15.  Mei, Y., He, C., Gao, C. et al., 2021, 3D-Printed Degradable   27.  Yang, M., Lu, J., Zhang, G. et al., 2021, CXCL13 shapes
               Anti-Tumor Scaffolds for Controllable Drug Delivery. Int J   immunoactive tumor microenvironment and enhances the
               Bioprint, 7(4):418.                                efficacy of PD-1 checkpoint blockade in high-grade serous
               doi: 10.18063/ijb.v7i4.418                         ovarian cancer. J Immunother Cancer, 9(1).
                                                                  doi: 10.1136/jitc-2020-001136
            16.  Yi, H. G., Jeong, Y. H., Kim, Y. et al., 2019, A bioprinted
               human-glioblastoma-on-a-chip for the identification of   28.  Ding, Q., Dong, S., Wang, R. et al., 2020, A nine-gene
               patient-specific responses to chemoradiotherapy.  Nat   signature related to tumor microenvironment predicts
               Biomed Eng, 3(7):509-519.                          overall survival with ovarian cancer.  Aging (Albany NY),
               doi: 10.1038/s41551-019-0363-x                     12(6):4879-4895.
                                                                  doi: 10.18632/aging.102914
            17.  Shim, I. K., Yi, H. J., Yi, H. G. et al., 2017, Locally-applied
               5-fluorouracil-loaded slow-release patch prevents pancreatic   29.  Di Modugno, F., Colosi, C., Trono, P. et al., 2019, 3D models
               cancer growth in an orthotopic mouse model. Oncotarget,   in the new era of immune oncology: focus on T cells, CAF
               8(25):40140-40151.                                 and ECM. J Exp Clin Cancer Res, 38(1):117.
               doi: 10.18632/oncotarget.17370                     doi: 10.1186/s13046-019-1086-2
            18.  Hirschhaeuser, F., Menne, H., Dittfeld, C. et al., 2010,   30.  Hinshaw, D. C. & Shevde, L. A., 2019, The Tumor
               Multicellular tumor spheroids: an underestimated tool is   Microenvironment Innately Modulates Cancer Progression.
               catching up again. J Biotechnol, 148(1):3-15.      Cancer Res, 79(18):4557-4566.
               doi: 10.1016/j.jbiotec.2010.01.012                 doi: 10.1158/0008-5472.CAN-18-3962
            19.  Abhinand, C. S., Raju, R., Soumya, S. J. et al., 2016, VEGF-A/  31.  Elhanani, O., Ben-Uri, R. & Keren, L., 2023, Spatial profiling
               VEGFR2 signaling network in endothelial cells relevant to   technologies illuminate the tumor microenvironment.
               angiogenesis. J Cell Commun Signal, 10(4):347-354.  CANCER CELL, 41(3):404-420.
               doi: 10.1007/s12079-016-0352-8                     doi: 10.1016/j.ccell.2023.01.010




            Volume 10 Issue 3 (2024)                       242                                doi: 10.36922/ijb.1673
   245   246   247   248   249   250   251   252   253   254   255