Page 93 - IJB-4-1
P. 93

Mechanism for corrosion protection of β-TCP reinforced ZK60 via laser rapid solidification

            (6) The Project of State Key Laboratory of High        Des,  32(5):  2813–2820. https://doi.org/10.1016/
            Performance Complex Manufacturing, Central South       j.matdes.2010.12.054
            University, and (7) National Postdoctoral Program for   11. He S-Y, Yue S, Chen M-F, et al., 2011, Microstructure
            Innovative Talents (BX201700291).
                                                                   and properties of biodegradable β-TCP reinforced
            References                                             Mg-Zn-Zr composites. Trans Nonferrous Met Soc

            1.  Chen Y, Xu Z, Smith C, et al., 2014, Recent advances on   China, 21(4): 814–819. https://doi.org/10.1016/S1003-
               the development of magnesium alloys for biodegradable   6326(11)60786-3
               implants. Acta Biomater, 10(11): 4561–4573. http://  12. Liu D, Zuo Y, Meng W, et al., 2012, Fabrication of
               dx.doi.org/ 10.1016/j.actbio.2014.07.005            biodegradable nano-sized β-TCP/Mg composite by a
            2.  Tie D, Guan R, Liu H, et al., 2016, An in vivo study on   novel melt shearing technology. Mater Sci Eng C, 32(5):
               the metabolism and osteogenic activity of bioabsorbable   1253–1258.  https://doi.org/10.1016/j.msec.2012.03.017
               Mg–1Sr alloy. Acta Biomater, 29: 455–467. http://  13. Yazdimamaghani M, Razavi M, Vashaee D, et al.,
               dx.doi.org/10.1016/j.actbio.2015.11.014             2016, In vitro analysis of Mg scaffolds coated with
            3.  Yazdani M, Yazdani M, Afshar A, et al., 2017, Elec tro-  polymer/hydrogel/ceramic composite layers. Surf
               chem i cal evaluation of AZ 31 magnesium alloy in two   Coat Technol, 301: 126–132. https://doi.org/10.1016/
               simulated biological solutions. Anti-Corros Method M,   j.surfcoat.2016.01.017
               64(1): 103–108. http://dx.doi.org/10.1108/ACMM-02-  14. Xie D, Zhao J, Qi Y, et al., 2013, Decreasing pores
               2016-1649                                           in a laser cladding layer with pulsed current. Chin
            4.  Ge S, Wang Y, Tian J, et al., 2016, An in vitro study   Opt Lett, 11(11): 111401. https://doi.org/10.3788/
               on the biocompatibility of WE magnesium alloys. J   COL201311.111401.
               Biomed Mater Res B Appl Biomater, 104(3): 482–487.   15. Liang Y-J, Li J, Li A, et al., 2017, Solidification
               http://dx.doi.org/10.1002/jbm.b.33388               path of single-crystal nickel-base superalloys with
            5.  Feng A and Han Y, 2010, The microstructure, me chan-  minor carbon additions under laser rapid directional
               i cal and corrosion properties of calcium poly phos-  solidification conditions. Scr Mater, 127: 58–62. https://
               phate reinforced ZK60A magnesium alloy composites.   doi.org/10.1016/j.scriptamat.2016.08.039
               J Alloys Compd, 504(2): 585–593. http://dx.doi.  16. Banerjee  R,  Collins  P  Cand  Fraser  H  L,  2002,
               org/10.1016/j.jallcom.2010.06.013                   Laser  deposition  of  in  situ  Ti–TiB  composites.
            6.  Shuai C, Yang Y, Wu P, et al., 2017, Laser rapid   Adv Eng  Mater,  4(11):  847–851.  https://doi.
               solidification improves corrosion behavior of Mg-Zn-  org/10.1002/1527-2648(20021105)4:11<847::AID-
               Zr alloy. J Alloys Compd, 691: 961–969.  https://doi.  ADEM847>3.0.CO;2-C
               org/10.1016/j.jallcom.2016.09.019                17. Yang Y, Wu P, Lin X, et al., 2016, System development,
            7.  Li  N,  Zheng Y,  2013,  Novel  magnesium  alloys   formability quality and microstructure evolution of se-
               developed for biomedical application: A review. J Mater   lec tive laser-melted magnesium. Virtual Phys Prototyp,
               Sci Technol, 29(6): 489–502. https://doi.org/10.1016/  11(3): 1–9. http://dx.doi.org/10.1080/17452759.2016.12
               j.jmst.2013.02.005                                  10522
            8.  Del Campo R, Savoini B, Munoz A, et al., 2014,   18. Pillai R S, Frasnelli M, Sglavo V M, 2017, HA/
               Mechanical properties and corrosion behavior of Mg–  β-TCP Plasma Sprayed Coatings on Ti Substrate
               HAP composites. J Mech Behav Biomed Mater, 39:      for Biomedical Applications. Ceram Int. https://doi.
               238–246. https://doi.org/10.1016/j.jmbbm.2014.07.014  org/10.1016/j.ceramint.2017.08.113
            9.  Wan Y, Cui T, Li W, et al., 2016, Mechanical and   19. Sutton A T, Kriewall C S, Ming C L, et al., 2016,
               biological properties of bioglass/magnesium composites   Powder characterisation techniques and effects of
               prepared via microwave sintering route. Mater Des, 99:   powder characteristics on part properties in powder-bed
               521–527. https://doi.org/10.1016/j.matdes.2016.03.096  fusion processes. Virtual Phys Prototyp, 12(1): 3–29.
            10. Feng A and Han Y, 2011, Mechanical and in vitro    http://dx.doi.org/10.1080/17452759.2016.1250605
               degradation behavior of ultrafine calcium polyphosphate   20. Ivanchenko P, Delgado-López J M, Iafisco M, et al.,
               reinforced  magnesium-alloy  composites.  Mater     2017, On the surface effects of citrates on nano-apatites:

            10                           International Journal of Bioprinting (2018)–Volume 4, Issue 1
   88   89   90   91   92   93   94   95   96   97   98