Page 94 - IJB-4-1
P. 94

Deng Y, et al.

               Evidence of a decreased hydrophilicity. Sci Rep, 7:8901.   able magnesium alloys for orthopaedic applications:
               http://dx.doi.org/10.1038/s41598-017-09376-x        A review on corrosion, biocompatibility and surface
            21. Sing S L, Yeong W Y, Wiria F E, et al., 2017, Direct   modifications. Mater Sci Eng C, 68: 948–963. http://
               selective laser sintering and melting of ceramics: A   dx.doi.org/10.1016/j.msec.2016.06.020
               review. Rapid Prototyp J, 23(3): 611–623. http://dx.doi.  27. Geng F, Tan L, Jin X, et al., 2009, The preparation,
               org/10.1108/RPJ-11-2015-0178                        cytocompatibility, and in vitro biodegradation study of
            22. Huang Y, Liu D, Anguilano L, et al., 2015, Fabrication   pure β-TCP on magnesium. J Mater Sci Mater Med,
               and characterization of a biodegradable Mg–2Zn–0.5   20(5): 1149–1157. http://dx.doi.org/10.1007/s10856-
               Ca/1β-TCP composite. Mater Sci Eng C, 54: 120–132.   008-3669-x
               http://dx.doi.org/10.1016/j.msec.2015.05.035     28. Kokubo T, 1996, Formation of biologically active bone-
            23. Yan Y, Kang Y, Li D, et al., 2017, Improvement of   like apatite on metals and polymers by a biomimetic
               the mechanical properties and corrosion resistance   process. Thermochim Acta, 280–281: 479–490. http://
               of biodegradable β-Ca 3  (PO 4 ) 2/Mg-Zn composites
                                                                   dx.doi.org/10.1016/0040-6031(95)02784-X
               prepared by powder metallurgy: The adding β-Ca 3   29. Zhang L, Pei J, Wang H, et al., 2017, Facile preparation
               (PO 4 ) 2 , hot extrusion and aging treatment. Mater
               Sci Eng C, 74: 582–596. http://dx.doi.org/10.1016/  of poly (lactic acid)/brushite bilayer coating on
               j.msec.2016.12.132                                  biodegradable  magnesium  alloys  with  multiple
            24. Yashima M, Sakai A, Kamiyama T, et al., 2003, Crystal   functionalities for orthopedic application. ACS Appl
               structure analysis of β-tricalcium phosphate Ca 3 (PO 4 ) 2    Mater Interfaces, 9(11): 9437–9448. http://dx.doi.
               by neutron powder diffraction. J Solid State Chem,   org/10.1021/acsami.7b00209
               175(2): 272–277. http://dx.doi.org/10.1016/S0022-  30. Ilich J Z and Kerstetter J E, 2000, Nutrition in bone
               4596(03)00279-2                                     health revisited: A story beyond calcium. J Am Coll
            25. Garoushi S K, Hatem M, Lassila L V, et al., 2015, The   Nutr, 19(6): 715–737. http://dx.doi.org/10.1080/073157
               effect of short fiber composite base on microleakage   24.2000.10718070
               and load-bearing capacity of posterior restorations. Acta   31. Li Z, Gu X, Lou S, et al., 2008, The development of
               Biomater Odontol Scand, 1(1): 6–12. http://dx.doi.org/1  binary Mg–Ca alloys for use as biodegradable materials
               0.3109/23337931.2015.1017576                        within bone. Biomaterials, 29(10): 1329–1344. http://
            26. Agarwal S, Curtin J, Duffy B, et al., 2016, Biodegrad-  dx.doi.org/10.1016/j.biomaterials.2007.12.021

































                                         International Journal of Bioprinting (2018)–Volume 4, Issue 1        11
   89   90   91   92   93   94   95   96   97   98   99