Page 94 - IJB-4-1
P. 94
Deng Y, et al.
Evidence of a decreased hydrophilicity. Sci Rep, 7:8901. able magnesium alloys for orthopaedic applications:
http://dx.doi.org/10.1038/s41598-017-09376-x A review on corrosion, biocompatibility and surface
21. Sing S L, Yeong W Y, Wiria F E, et al., 2017, Direct modifications. Mater Sci Eng C, 68: 948–963. http://
selective laser sintering and melting of ceramics: A dx.doi.org/10.1016/j.msec.2016.06.020
review. Rapid Prototyp J, 23(3): 611–623. http://dx.doi. 27. Geng F, Tan L, Jin X, et al., 2009, The preparation,
org/10.1108/RPJ-11-2015-0178 cytocompatibility, and in vitro biodegradation study of
22. Huang Y, Liu D, Anguilano L, et al., 2015, Fabrication pure β-TCP on magnesium. J Mater Sci Mater Med,
and characterization of a biodegradable Mg–2Zn–0.5 20(5): 1149–1157. http://dx.doi.org/10.1007/s10856-
Ca/1β-TCP composite. Mater Sci Eng C, 54: 120–132. 008-3669-x
http://dx.doi.org/10.1016/j.msec.2015.05.035 28. Kokubo T, 1996, Formation of biologically active bone-
23. Yan Y, Kang Y, Li D, et al., 2017, Improvement of like apatite on metals and polymers by a biomimetic
the mechanical properties and corrosion resistance process. Thermochim Acta, 280–281: 479–490. http://
of biodegradable β-Ca 3 (PO 4 ) 2/Mg-Zn composites
dx.doi.org/10.1016/0040-6031(95)02784-X
prepared by powder metallurgy: The adding β-Ca 3 29. Zhang L, Pei J, Wang H, et al., 2017, Facile preparation
(PO 4 ) 2 , hot extrusion and aging treatment. Mater
Sci Eng C, 74: 582–596. http://dx.doi.org/10.1016/ of poly (lactic acid)/brushite bilayer coating on
j.msec.2016.12.132 biodegradable magnesium alloys with multiple
24. Yashima M, Sakai A, Kamiyama T, et al., 2003, Crystal functionalities for orthopedic application. ACS Appl
structure analysis of β-tricalcium phosphate Ca 3 (PO 4 ) 2 Mater Interfaces, 9(11): 9437–9448. http://dx.doi.
by neutron powder diffraction. J Solid State Chem, org/10.1021/acsami.7b00209
175(2): 272–277. http://dx.doi.org/10.1016/S0022- 30. Ilich J Z and Kerstetter J E, 2000, Nutrition in bone
4596(03)00279-2 health revisited: A story beyond calcium. J Am Coll
25. Garoushi S K, Hatem M, Lassila L V, et al., 2015, The Nutr, 19(6): 715–737. http://dx.doi.org/10.1080/073157
effect of short fiber composite base on microleakage 24.2000.10718070
and load-bearing capacity of posterior restorations. Acta 31. Li Z, Gu X, Lou S, et al., 2008, The development of
Biomater Odontol Scand, 1(1): 6–12. http://dx.doi.org/1 binary Mg–Ca alloys for use as biodegradable materials
0.3109/23337931.2015.1017576 within bone. Biomaterials, 29(10): 1329–1344. http://
26. Agarwal S, Curtin J, Duffy B, et al., 2016, Biodegrad- dx.doi.org/10.1016/j.biomaterials.2007.12.021
International Journal of Bioprinting (2018)–Volume 4, Issue 1 11

