Page 138 - IJB-4-2
P. 138

Mandt D, et al.

                                                                                            th
               membranes in tissue engineering and biohybrid organ   Stuttgart: Georg Thieme Verlag, 16  edition, pp. 752ff, 2012.
               technology.  Membrane  technology:  Membranes  for   17.  Desoye G, Gauster M, Wadsack C, et al., 2011, Placental
                           st
               life sciences, 1  edition, pp. 343, 2007. http://dx.doi.  transport in pregnancy pathologies. Am J Clin Nutr,  94(6):
               org/10.1002/9783527631360.ch8                      1896–1902. http://dx.doi.org/10.3945/ajcn.110.000851
           7.   Van Den Bulcke A I, Bogdanov B, De Rooze N, et al., 2000,   18.  Gallo L A, Barrett H L, Dekker N M, 2016, Review:
               Structural and rheological properties of methacrylamide   Placental transport and metabolism of energy substrates in
               modified gelatin hydrogels. Biomacromolecules, 1(1): 31–  maternal obesity and diabetes. Placenta, 54: 59–67. http://
               38. http://dx.doi.org/10.1021/bm990017d            dx.doi.org/10.1016/j.placenta.2016.12.006
           8.   Ovsianikov A,  Mironov V,  Stampfl  J,  et  al.,  2012,   19.  Gaccioli F, Lager S, Powell T L, et al., 2012, Placental
               Engineering 3D cell-culture matrices: Multiphoton pro-  transport in response to altered maternal nutrition. J Dev
               cessing technologies for biological & tissue engineering   Orig Health Dis, 4(2): 1–15. http://dx.doi.org/10.1017/
               applications. Expert Rev Med Devices, 9(6): 613–633. http://  S2040174412000529
               dx.doi.org/10.1586/erd.12.48                    20.  Gaither K, Quraishi A N, Illsley N P, 2016, Diabetes alters
           9.   Hölzl K, Lin S, Tytgat L, et al, 2016, Bioink properties   the expression and activity of the human placental GLUT1
               before, during and after 3D bioprinting. Biofabrication, 8(3):   glucose transporter. J Clin Endocrinol Metab, 84(2): 695–
               032002. http://dx.doi.org/10.1088/1758-5090/8/3/032002  701. http://dx.doi.org/10.1210/jcem.84.2.5438
           10.  Van Hoorick J, Gruber P, Markovic M, et al., 2017, Cross-  21.  Jansson T, Ekstrand Y, Wennergren M, et al., 2001, Placental
               linkable gelatins with superior mechanical properties through   glucose transport in gestational diabetes mellitus. Am J
               carboxylic acid modification: Increasing the two-photon   Obstet Gynecol, 184(2): 111–116. http://dx.doi.org/10.1067/
               polymerization potential. Biomacromolecules, 18(10): 3260–  mob.2001.108075
               3272. http://dx.doi.org/10.1021/acs.biomac.7b00905  22.  Miura S, Sato K, Kato-Negishi M, et al., 2015, Fluid shear
           11.  Tayalia P, Mendonca C R, Baldacchini T, et al., 2008, 3D   triggers microvilli formation via mechanosensitive activation
               cell-migration studies using two-photon engineered polymer   of TRPV6. Nat Commun, 6(12): 8871. http://dx.doi.
               scaffolds. Adv Mater, 20(23): 4494–4498. http://dx.doi.  org/10.1038/ncomms9871
               org/10.1002/adma.200801319                      23.  Caplin J D, 2016, Utilizing microfluidic technology to
           12.  Paz V F, Emons M, Obata K, et al., 2012, Development   replicate placental functions in a drug testing model. 2016.
               of  functional  sub-100  nm  structures  with  3D  two-  Global Congress on NanoEngineering for Medicine and
               photon polymerization technique and optical methods for   Biology.
               characterization. J Laser Appl, 24(4): 293–301. http://dx.doi.  24.  Chen S, Zhang Q, Nakamoto T, et al., 2016, Gelatin
               org/10.2351/1.4712151                              scaffolds with controlled pore structure and mechanical
           13.  Stampfl J, Liska R, Ovsinikov A, 2016, Multiphoton   property for cartilage tissue engineering. Tissue Eng Part C
               lithography: Techniques, materials, and applications. in   Methods, 22(3): 189–198.
               Stampfl J, Liska R, Ovsinikov A, (Eds.) John Wiley & Sons,   25.  Gorgieva  S,  Kokol V,  2011,  Biomaterials  and  their
               ISBN: 978-3-527-33717-0                            biocompatibility: Review and perspectives. InTech, 1–36.
           14.  Markovic M, Van Hoorick J, Hölzl K, et al., 2015, Hybrid   26.  Markovic  M, Van  Hoorick  J,  Hölzl  K, et al.,  2015,
               tissue engineering scaffolds by combination of three-  Hybrid tissue engineering scaffolds by combination of
               dimensional printing and cell photoencapsulation. J   three-dimensional printing and cell photoencapsulation.
               Nanotechnol Eng Med, 6(2): 0210011–210017. http://dx.doi.  J Nanotechnol Eng Med,  6(2):  1–7.  http://dx.doi.
               org/10.1115/1.4031466                              org/10.1115/1.4031466
           15.  Ovsianikov A, Muehleder S, Torgersen T, et al., 2014, Laser   27.  Van Hoorick J, Gruber P, Markovic M, et al., 2018, Highly
               photofabrication of cell-containing hydrogel constructs.   reactive thiol-norbornene photo-click hydrogels: Toward
               Langmuir, 30(13): 3787–3794. http://dx.doi.org/10.1021/  improved processability. Macromolecular Rapid Commun:
               la402346z                                          1800181, http://dx.doi.org/10.1002/marc.201800181
           16.  Faller A, Schünke M, Schünke G, et al., 2012, Fortpflanzung,   28.  Nichol  J W,  Koshy  S T,  Bae  H,  et al.,  2010,  Cell-
               Entwikclung und Geburt [in German]. Reproduction,   laden microengineered gelatin methacrylate hydrogels.
               development and birth. in Der Körper des Menschen,   Biomaterials, 31(21): 5536–5544. http://dx.doi.org/10.1016/

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        11
   133   134   135   136   137   138   139   140   141   142   143