Page 138 - IJB-4-2
P. 138
Mandt D, et al.
th
membranes in tissue engineering and biohybrid organ Stuttgart: Georg Thieme Verlag, 16 edition, pp. 752ff, 2012.
technology. Membrane technology: Membranes for 17. Desoye G, Gauster M, Wadsack C, et al., 2011, Placental
st
life sciences, 1 edition, pp. 343, 2007. http://dx.doi. transport in pregnancy pathologies. Am J Clin Nutr, 94(6):
org/10.1002/9783527631360.ch8 1896–1902. http://dx.doi.org/10.3945/ajcn.110.000851
7. Van Den Bulcke A I, Bogdanov B, De Rooze N, et al., 2000, 18. Gallo L A, Barrett H L, Dekker N M, 2016, Review:
Structural and rheological properties of methacrylamide Placental transport and metabolism of energy substrates in
modified gelatin hydrogels. Biomacromolecules, 1(1): 31– maternal obesity and diabetes. Placenta, 54: 59–67. http://
38. http://dx.doi.org/10.1021/bm990017d dx.doi.org/10.1016/j.placenta.2016.12.006
8. Ovsianikov A, Mironov V, Stampfl J, et al., 2012, 19. Gaccioli F, Lager S, Powell T L, et al., 2012, Placental
Engineering 3D cell-culture matrices: Multiphoton pro- transport in response to altered maternal nutrition. J Dev
cessing technologies for biological & tissue engineering Orig Health Dis, 4(2): 1–15. http://dx.doi.org/10.1017/
applications. Expert Rev Med Devices, 9(6): 613–633. http:// S2040174412000529
dx.doi.org/10.1586/erd.12.48 20. Gaither K, Quraishi A N, Illsley N P, 2016, Diabetes alters
9. Hölzl K, Lin S, Tytgat L, et al, 2016, Bioink properties the expression and activity of the human placental GLUT1
before, during and after 3D bioprinting. Biofabrication, 8(3): glucose transporter. J Clin Endocrinol Metab, 84(2): 695–
032002. http://dx.doi.org/10.1088/1758-5090/8/3/032002 701. http://dx.doi.org/10.1210/jcem.84.2.5438
10. Van Hoorick J, Gruber P, Markovic M, et al., 2017, Cross- 21. Jansson T, Ekstrand Y, Wennergren M, et al., 2001, Placental
linkable gelatins with superior mechanical properties through glucose transport in gestational diabetes mellitus. Am J
carboxylic acid modification: Increasing the two-photon Obstet Gynecol, 184(2): 111–116. http://dx.doi.org/10.1067/
polymerization potential. Biomacromolecules, 18(10): 3260– mob.2001.108075
3272. http://dx.doi.org/10.1021/acs.biomac.7b00905 22. Miura S, Sato K, Kato-Negishi M, et al., 2015, Fluid shear
11. Tayalia P, Mendonca C R, Baldacchini T, et al., 2008, 3D triggers microvilli formation via mechanosensitive activation
cell-migration studies using two-photon engineered polymer of TRPV6. Nat Commun, 6(12): 8871. http://dx.doi.
scaffolds. Adv Mater, 20(23): 4494–4498. http://dx.doi. org/10.1038/ncomms9871
org/10.1002/adma.200801319 23. Caplin J D, 2016, Utilizing microfluidic technology to
12. Paz V F, Emons M, Obata K, et al., 2012, Development replicate placental functions in a drug testing model. 2016.
of functional sub-100 nm structures with 3D two- Global Congress on NanoEngineering for Medicine and
photon polymerization technique and optical methods for Biology.
characterization. J Laser Appl, 24(4): 293–301. http://dx.doi. 24. Chen S, Zhang Q, Nakamoto T, et al., 2016, Gelatin
org/10.2351/1.4712151 scaffolds with controlled pore structure and mechanical
13. Stampfl J, Liska R, Ovsinikov A, 2016, Multiphoton property for cartilage tissue engineering. Tissue Eng Part C
lithography: Techniques, materials, and applications. in Methods, 22(3): 189–198.
Stampfl J, Liska R, Ovsinikov A, (Eds.) John Wiley & Sons, 25. Gorgieva S, Kokol V, 2011, Biomaterials and their
ISBN: 978-3-527-33717-0 biocompatibility: Review and perspectives. InTech, 1–36.
14. Markovic M, Van Hoorick J, Hölzl K, et al., 2015, Hybrid 26. Markovic M, Van Hoorick J, Hölzl K, et al., 2015,
tissue engineering scaffolds by combination of three- Hybrid tissue engineering scaffolds by combination of
dimensional printing and cell photoencapsulation. J three-dimensional printing and cell photoencapsulation.
Nanotechnol Eng Med, 6(2): 0210011–210017. http://dx.doi. J Nanotechnol Eng Med, 6(2): 1–7. http://dx.doi.
org/10.1115/1.4031466 org/10.1115/1.4031466
15. Ovsianikov A, Muehleder S, Torgersen T, et al., 2014, Laser 27. Van Hoorick J, Gruber P, Markovic M, et al., 2018, Highly
photofabrication of cell-containing hydrogel constructs. reactive thiol-norbornene photo-click hydrogels: Toward
Langmuir, 30(13): 3787–3794. http://dx.doi.org/10.1021/ improved processability. Macromolecular Rapid Commun:
la402346z 1800181, http://dx.doi.org/10.1002/marc.201800181
16. Faller A, Schünke M, Schünke G, et al., 2012, Fortpflanzung, 28. Nichol J W, Koshy S T, Bae H, et al., 2010, Cell-
Entwikclung und Geburt [in German]. Reproduction, laden microengineered gelatin methacrylate hydrogels.
development and birth. in Der Körper des Menschen, Biomaterials, 31(21): 5536–5544. http://dx.doi.org/10.1016/
International Journal of Bioprinting (2018)–Volume 4, Issue 2 11

