Page 34 - IJB-4-2
P. 34
The arrival of commercial bioprinters – Towards 3D bioprinting revolution!
36. Kang H-W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting for long-term multicellular spheroid and embryoid body
system to produce human-scale tissue constructs with culture. Lab on a Chip, 15(11): 2412–2418. http://dx.doi.
structural integrity. Nat Biotech, 34(3): 312–319. https:// org/10.1039/C5LC00159E
dx.doi.org/10.1038/nbt.3413 48. Memic A, Navaei A, Mirani B, et al., 2017, Bioprinting
37. Mandrycky C, Wang Z, Kim K, et al., 2016, 3D technologies for disease modeling. Biotechnol Lett, 39(9):
bioprinting for engineering complex tissues. Biotechnology 1279–1290. http://dx.doi.org/10.1007/s10529-017-2360-z
Advances, 34(4): 422–434. http://dx.doi.org/10.1016/ 49. Majidi C, 2013, Soft Robotics: A perspective: Current trends
j.biotechadv.2015.12.011 and prospects for the future. Soft Robot, 1(1): 5–11. https://
38. Peng W, Datta P, Ayan B, et al., 2017, 3D bioprinting dx.doi.org/10.1089/soro.2013.0001
for drug discovery and development in pharmaceutics. 50. Kim S, Laschi C, Trimmer B, 2013, Soft robotics: A
Acta Biomater, 57: 26–46. http://dx.doi.org/10.1016/ bioinspired evolution in robotics. Trends Biotechnol, 31(5):
j.actbio.2017.05.025 287–294. https://dx.doi.org/10.1016/j.tibtech.2013.03.002
39. Poldervaart M T, Gremmels H, van Deventer K, et al., 51. Patino T, Mestre R, Sanchez S, 2016, Miniaturized soft bio-
Prolonged presence of VEGF promotes vascularization hybrid robotics: A step forward into healthcare applications.
in 3D bioprinted scaffolds with defined architecture. J Lab Chip, 16(19): 3626–3630. http://dx.doi.org/10.1039/
Control Release, 184: 58–66. http://dx.doi.org/10.1016/ C6LC90088G
j.jconrel.2014.04.007 52. Chan V, Park K, Collens M B, et al., 2012, Development of
40. Knowlton S, Onal S, Yu C H, et al., 2015, Bioprinting for miniaturized walking biological machines. Sci Rep, 2: 857.
cancer research. Trends Biotechnol, 33(9): 504–513. http:// http://dx.doi.org/10.1038/srep00857
dx.doi.org/10.1016/j.tibtech.2015.06.007 53. Godoi F C, Prakash S, Bhandari B R, 2016, 3d printing
41. Nguyen D G, Pentoney S L, 2017, Bioprinted three technologies applied for food design: Status and prospects.
dimensional human tissues for toxicology and disease J Food Eng, 179: 44–54. https://dx.doi.org/10.1016/
modeling. Drug Discov Today, 23: 37–44. http://dx.doi. j.jfoodeng.2016.01.025
org/10.1016/j.ddtec.2017.03.001 54. Forgacs G, Marga F, Jakab K R (inventors); The curators
42. Nupura S B, Vijayan M, Solange M, et al., 2016, of the university of missouri (assignee), 2014, Engineered
A liver-on-a-chip platform with bioprinted hepatic comestible meat patent.
spheroids. Biofabrication, 8(1): 014101. http://dx.doi. 55. Marga F S inventor; Modern Meadow, Inc. (assignee), 2016,
org/10.1088/1758-5090/8/1/014101 Dried food products formed from cultured muscle cells
43. King S M, Higgins J W, Nino C R, et al., 2017, 3D proximal patent.
tubule tissues recapitulate key aspects of renal physiology to 56. Schroeder T B H, Guha A, Lamoureux A, et al., 2017,
enable nephrotoxicity testing. Front Physiol, 8: 123. http:// An electric-eel-inspired soft power source from stacked
dx.doi.org/10.3389/fphys.2017.00123 hydrogels. Nature, 552: 214. http://dx.doi.org/10.1038/
44. Del Nero P, Song Y H, Fischbach C, 2013, Microengineered nature24670
tumor models: Insights & opportunities from a physical 57. Julia S, Tilman A, Max A, et al., 2017, Green bioprinting:
sciences-oncology perspective. Biomed Microdevices, 15(4): Extrusion-based fabrication of plant cell-laden biopolymer
583–593. http://dx.doi.org/10.1007/s10544-013-9763-y hydrogel scaffolds. Biofabrication, 9(4): 045011. http://
45. Zhang Y S, Duchamp M, Oklu R, et al., 2016, Bioprinting dx.doi.org/10.1088/1758-5090/aa8854
the cancer microenvironment. ACS Biomater Sci 58. Wicaksono A, da Silva J A T, 2015, Plant bioprinint novel
Eng, 2(10): 1710–1721. http://dx.doi.org/10.1021/ perspective for plant biotechnology. J Plant Develop, 22(1):
acsbiomaterials.6b00246 135–141.
46. Huang T Q, Qu X, Liu J, et al., 2014, 3D printing of 59. 2018, Organovo, History, Avaliable from: http://organovo.
biomimetic microstructures for cancer cell migration. com/about/history/
Biomed Microdevices, 16(1): 127–132. http://dx.doi. 60. Candance Grundy R S, Jeff Nickel, Rhiannon N. Hardwick,
org/10.1007/s10544-013-9812-6 Deborah G. Nguyen, 2016, Utilization of exVive3D human
TM
47. Hribar K C, Finlay D, Ma X, et al., 2015, Nonlinear 3D liver tissues for the evaluation of valproic acid-induced liver
projection printing of concave hydrogel microstructures injury. Society of Toxicology Meeting. New Orleans
18 International Journal of Bioprinting (2018)–Volume 4, Issue 2

