Page 34 - IJB-4-2
P. 34

The arrival of commercial bioprinters – Towards 3D bioprinting revolution!

           36.  Kang H-W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting   for long-term multicellular spheroid and embryoid body
               system to produce human-scale tissue constructs with   culture. Lab on a Chip, 15(11): 2412–2418. http://dx.doi.
               structural integrity. Nat Biotech, 34(3): 312–319. https://  org/10.1039/C5LC00159E
               dx.doi.org/10.1038/nbt.3413                     48.  Memic A, Navaei A, Mirani B, et al., 2017, Bioprinting
           37.  Mandrycky  C,  Wang  Z,  Kim  K,  et al., 2016, 3D   technologies for disease modeling. Biotechnol Lett, 39(9):
               bioprinting for engineering complex tissues. Biotechnology   1279–1290. http://dx.doi.org/10.1007/s10529-017-2360-z
               Advances, 34(4): 422–434. http://dx.doi.org/10.1016/  49.  Majidi C, 2013, Soft Robotics: A perspective: Current trends
               j.biotechadv.2015.12.011                           and prospects for the future. Soft Robot, 1(1): 5–11. https://
           38.  Peng W, Datta P, Ayan B, et al., 2017, 3D bioprinting   dx.doi.org/10.1089/soro.2013.0001
               for drug discovery and development in pharmaceutics.   50.  Kim S, Laschi C, Trimmer B, 2013, Soft robotics: A
               Acta Biomater, 57: 26–46. http://dx.doi.org/10.1016/  bioinspired evolution in robotics. Trends Biotechnol, 31(5):
               j.actbio.2017.05.025                               287–294. https://dx.doi.org/10.1016/j.tibtech.2013.03.002
           39.  Poldervaart M T, Gremmels H, van Deventer K, et al.,   51.  Patino T, Mestre R, Sanchez S, 2016, Miniaturized soft bio-
               Prolonged presence of VEGF promotes vascularization   hybrid robotics: A step forward into healthcare applications.
               in 3D bioprinted scaffolds with defined architecture. J   Lab Chip, 16(19): 3626–3630. http://dx.doi.org/10.1039/
               Control Release, 184: 58–66. http://dx.doi.org/10.1016/  C6LC90088G
               j.jconrel.2014.04.007                           52.  Chan V, Park K, Collens M B, et al., 2012, Development of
           40.  Knowlton S, Onal S, Yu C H, et al., 2015, Bioprinting for   miniaturized walking biological machines. Sci Rep, 2: 857.
               cancer research. Trends Biotechnol, 33(9): 504–513. http://  http://dx.doi.org/10.1038/srep00857
               dx.doi.org/10.1016/j.tibtech.2015.06.007        53.  Godoi F C, Prakash S, Bhandari B R, 2016, 3d printing
           41.  Nguyen D G, Pentoney S L, 2017, Bioprinted three   technologies applied for food design: Status and prospects.
               dimensional human tissues for toxicology and disease   J Food Eng, 179: 44–54. https://dx.doi.org/10.1016/
               modeling. Drug Discov Today, 23: 37–44. http://dx.doi.  j.jfoodeng.2016.01.025
               org/10.1016/j.ddtec.2017.03.001                 54.  Forgacs G, Marga F, Jakab K R (inventors); The curators
           42.  Nupura  S  B,  Vijayan  M,  Solange  M,  et al., 2016,   of the university of missouri (assignee), 2014, Engineered
               A liver-on-a-chip platform with bioprinted hepatic   comestible meat patent.
               spheroids. Biofabrication, 8(1): 014101. http://dx.doi.  55.  Marga F S inventor; Modern Meadow, Inc. (assignee), 2016,
               org/10.1088/1758-5090/8/1/014101                   Dried food products formed from cultured muscle cells
           43.  King S M, Higgins J W, Nino C R, et al., 2017, 3D proximal   patent.
               tubule tissues recapitulate key aspects of renal physiology to   56.  Schroeder T B H, Guha A, Lamoureux A, et al., 2017,
               enable nephrotoxicity testing. Front Physiol, 8: 123. http://  An electric-eel-inspired soft power source from stacked
               dx.doi.org/10.3389/fphys.2017.00123                hydrogels. Nature, 552: 214. http://dx.doi.org/10.1038/
           44.  Del Nero P, Song Y H, Fischbach C, 2013, Microengineered   nature24670
               tumor models: Insights & opportunities from a physical   57.  Julia S, Tilman A, Max A, et al., 2017, Green bioprinting:
               sciences-oncology perspective. Biomed Microdevices, 15(4):   Extrusion-based fabrication of plant cell-laden biopolymer
               583–593. http://dx.doi.org/10.1007/s10544-013-9763-y  hydrogel scaffolds. Biofabrication, 9(4): 045011. http://
           45.  Zhang Y S, Duchamp M, Oklu R, et al., 2016, Bioprinting   dx.doi.org/10.1088/1758-5090/aa8854
               the cancer microenvironment.  ACS Biomater Sci   58.  Wicaksono A, da Silva J A T, 2015, Plant bioprinint novel
               Eng, 2(10): 1710–1721. http://dx.doi.org/10.1021/  perspective for plant biotechnology. J Plant Develop, 22(1):
               acsbiomaterials.6b00246                            135–141.
           46.  Huang T Q, Qu X, Liu J, et al., 2014, 3D printing of   59.  2018, Organovo,  History, Avaliable from: http://organovo.
               biomimetic microstructures for cancer cell migration.   com/about/history/
               Biomed Microdevices, 16(1): 127–132. http://dx.doi.  60.  Candance Grundy R S, Jeff Nickel, Rhiannon N. Hardwick,
               org/10.1007/s10544-013-9812-6                      Deborah G. Nguyen, 2016, Utilization of exVive3D  human
                                                                                                        TM
           47.  Hribar K C, Finlay D, Ma X, et al., 2015, Nonlinear 3D   liver tissues for the evaluation of valproic acid-induced liver
               projection printing of concave hydrogel microstructures   injury. Society of Toxicology Meeting. New Orleans

           18                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   29   30   31   32   33   34   35   36   37   38   39