Page 33 - IJB-4-2
P. 33

Choudhury D, et al.

               e0180375. https://dx.doi.org/10.1371/journal.pone.0180375  fabrication of human skin by three-dimensional bioprinting.
           14.  Ozbolat  I T,  Hospodiuk  M,  2016,  Current  advances   Tissue Eng Part C Methods, 20(6): 473–484. https://dx.doi.
               and future perspectives in extrusion-based bioprinting.   org/10.1089/ten.TEC.2013.0335
               Biomaterials, 76: 321–343. https://dx.doi.org/10.1016/  26.  Ng W L, Qi J T Z, Yeong W Y,  et al., 2018, Proof-
               j.biomaterials.2015.10.076                         of-concept: 3D bioprinting of pigmented human skin
           15.  Knowlton  S, Yenilmez  B, Anand  S,  et al., 2017,   constructs. Biofabrication, 10(2): 025005. https://dx.doi.
               Photocrosslinking-based bioprinting: Examining crosslinking   org/10.1088/1758-5090/aa9e1e
               schemes. Bioprinting, 5: 10–18. https://dx.doi.org/10.1016/  27.  Gao G, Schilling A F, Hubbell K, et al., 2015, Improved
               j.bprint.2017.03.001                               properties of bone and cartilage tissue from 3D inkjet-
           16.  de Gans B J, Duineveld P C, Schubert U S, 2004,   bioprinted human mesenchymal stem cells by simultaneous
               Inkjet printing of polymers: State of the art and future   deposition and photocrosslinking in PEG-GelMA. Biotechnol
               developments. Adv Mater, 16(3): 203–213. http://dx.doi.  Lett, 37(11): 2349–2355. https://dx.doi.org/10.1007/s10529-
               org/10.1002/adma.200300385                         015-1921-2
           17.  Koch L, Gruene M, Unger C, et al., 2013, Laser assisted   28.  Apelgren P, Amoroso M, Lindahl A,  et al., 2017,
               cell printing. Curr Pharm Biotechnol, 14(1): 91–97. https://  Chondrocytes and stem cells in 3D-bioprinted structures
               dx.doi.org/10.2174/138920113804805368              create human cartilage in vivo. PLOS ONE, 12(12):
           18.  Nahmias Y, Schwartz R E, Verfaillie C M, et al., 2005,   e0189428. https://dx.doi.org/10.1371/journal.pone.0189428
               Laser-guided direct writing for three-dimensional tissue   29.  Tyler K M, Morgan B, Young-Joon S, et al., 2015, A 3D
               engineering. Biotechnol Bioeng, 92(2): 129–136. http://  bioprinted complex structure for engineering  the muscle–
               dx.doi.org/10.1002/bit.20585                       tendon unit. Biofabrication, 7(3): 035003. https://dx.doi.
           19.  Guillotin B, Souquet A, Catros S, et al., 2010, Laser assisted   org/10.1088/1758-5090/7/3/035003
               bioprinting of engineered tissue with high cell density and   30.  Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an in
               microscale organization. Biomaterials, 31(28): 7250–7256.   vitro air-blood barrier by 3D bioprinting. Scientific Reports,
               https://dx.doi.org/10.1016/j.biomaterials.2010.05.055  5: 7974. https://dx.doi.org/10.1038/srep07974
           20.  Cooke M N, Fisher J P, Dean D, et al., 2003, Use of   31.  Nguyen D G, Funk J, Robbins J B, et al., 2016, Bioprinted
               stereolithography  to  manufacture  critical-sized  3D   3D primary liver tissues allow assessment of organ-level
               biodegradable scaffolds for bone ingrowth. J Biomed   response to clinical drug induced toxicity in vitro. PLOS
               Mater Res B Appl Biomater, 64(2): 65–69. https://dx.doi.  ONE, 11(7): e0158674. https://dx.doi.org/10.1371/journal.
               org/10.1002/jbm.b.10485                            pone.0158674
           21.  Dhariwala B, Hunt E, Boland T, 2004, Rapid prototyping   32.  Alan F-J, Catherine F, Dirk-Jan C, et al., 2015, Bioprinting
               of tissue-engineering constructs, using photopolymerizable   of  human  pluripotent  stem  cells  and  their  directed
               hydrogels and stereolithography. Tissue Eng, 10(9–10):   differentiation into hepatocyte-like cells for the generation
               1316–1322. https://dx.doi.org/10.1089/ten.2004.10.1316  of mini-livers in 3D. Biofabrication, 7(4): 044102. https://
           22.  Ozbolat I T, Yu Y, 2013, Bioprinting toward organ   dx.doi.org/10.1088/1758-5090/7/4/044102
               fabrication: Challenges and future trends. IEEE T BioO-  33.  Jang J, Park H J, Kim S W, et al., 2017, 3D printed complex
               Med Eng, 60(3): 691–699. https://dx.doi.org/10.1109/  tissue construct using stem cell-laden decellularized
               TBME.2013.2243912                                  extracellular matrix bioinks for cardiac repair.
           23.  Koch L, Deiwick A, Schlie S, et al., 2012, Skin tissue   Biomaterials, 112: 264–274. http://dx.doi.org/10.1016/
               generation by laser cell printing. Biotechnol Bioeng, 109(7):   j.biomaterials.2016.10.026
               1855–1863. https://dx.doi.org/10.1002/bit.24455  34.  Zhang Y S, Arneri A, Bersini S, et al., 2016, Bioprinting
           24.  Michael S, Sorg H, Peck C T, et al., 2013, Tissue engineered   3D microfibrous scaffolds for engineering endothelialized
               skin substitutes created by laser-assisted bioprinting form   myocardium and heart-on-a-chip. Biomaterials, 110: 45–59.
               skin-like structures in the dorsal skin fold chamber in mice.   https://dx.doi.org/10.1016/j.biomaterials.2016.09.003
               PLOS ONE, 8(3): e57741. https://dx.doi.org/10.1371/journal.  35.  Han H W, Hsu S H, 2017, Using 3D bioprinting to produce
               pone.0057741                                       mini-brain. Neural Regeneration Research, 12(10): 1595–
           25.  Lee V, Singh G, Trasatti J P, et al., 2014, Design and   1596. https://dx.doi.org/10.4103/1673-5374.217325

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        17
   28   29   30   31   32   33   34   35   36   37   38