Page 88 - IJB-4-2
P. 88

A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering

           The Fundamental Research Funds for the Central         prefrozen process on properties of chitosan/ hydroxyapatite/
           Universities of Central South University (2016zzts046).  poly(methyl methacrylate) composite prepared by freeze
           References                                             drying method used for bone tissue engineering. RSC Adv,
                                                                  5(97): 79679–79686. http://doi.org/10.1039/C5RA14549J
           1.   Tavolaro P, Catalano S, Martino G, et al., 2016, Zeolite   12.  Sultana N, Wang M, 2012, PHBV/PLLA-based composite
               inorganic scaffolds for novel biomedical application: Effect   scaffolds fabricated using an emulsion freezing/freeze-drying
               of physicochemical characteristic of zeolite membranes on   technique for bone tissue engineering: surface modification
               cell adhesion and viability. Appl Surf Sci, 380: 135–140.   and in vitro biological evaluation. Biofabrication, 4(1):
               http://doi.org/10.1016/j.apsusc.2016.01.279        015003. http://doi.org/10.1088/1758-5082/4/1/015003
           2.   Puppi D, Piras A M, Pirosa A, et al., 2016, Levofloxacin-  13.  Soh E, Kolos E, Ruys A J, 2015, Foamed high porosity
               loaded star poly(ε-caprolactone) scaffolds by additive   alumina for use as a bone tissue scaffold. Ceram Int, 41(1):
               manufacturing. J Mater Sci Mater Med, 27(3): 44. http://doi.  1031–1047. https://doi.org/10.1016/j.ceramint.2014.09.026
               org/10.1007/s10856-015-5658-1                   14.  Wang C, Chen H, Zhu X, et al., 2017, An improved
           3.   Fradique R, Correia T R, Miguel S P, et al., 2016, Production   polymeric sponge replication method for biomedical porous
               of new 3D scaffolds for bone tissue regeneration by rapid   titanium scaffolds. Mater Sci Eng C Mater Biol Appl, 70(Pt
               prototyping. J Mater Sci Mater Med, 27(4): 1–14. http://doi.  2): 1192. http://doi.org/10.1016/j.msec.2016.03.037
               org/10.1007/s10856-016-5681-x                   15.  Baino F, Vitale-Brovarone C, 2014, Mechanical properties
           4.   Gao C, Deng Y, Feng P, et al., 2014, Current progress in   and reliability of glass–ceramic foam scaffolds for bone
               bioactive ceramic scaffolds for bone repair and regeneration.   repair. Mater Lett, 118(3): 27–30. https://doi.org/10.1016/
               Int J Mol Sci, v15(3): 4714–4732. http://doi.org/10.3390/  j.matlet.2013.12.037
               ijms15034714                                    16.  Kumar A, Mandal S, Barui S, et al., 2016, Low temperature
           5.   Yuan H, Zhou Q, Li B, et al., 2015, Direct printing of   additive manufacturing of three dimensional scaffolds for
               patterned three-dimensional ultrafine fibrous scaffolds   bone-tissue engineering applications: Processing related
               by stable jet electrospinning for cellular ingrowth.   challenges and property assessment. Mater Sci Eng R Rep,
               Biofabrication, 7(4): 045004. http://doi.org/10.1088/1758-  103: 1–39. https://doi.org/10.1016/j.mser.2016.01.001
               5090/7/4/045004                                 17.  Yang Y, Wu P, Lin X, et al., 2016, System development,
           6.   Gao C, Peng S, Feng P, et al., 2017, Bone biomaterials and   formability quality and microstructure evolution of selective
               interactions with stem cells. Bone Res, 21; 5: 17059. http://  laser-melted magnesium. Virtual Phys Prototyp, 11(3): 173–
               doi.org/10.1038/boneres.2017.59                    181. http://doi.org/10.1080/17452759.2016.1210522
           7.   Ng R, Zhang X, Liu N, et al., 2009, Modifications of   18.  Ng W L, Goh M H, Yeong W Y, et al., 2018, Applying
               nonwoven polyethylene terephthalate fibrous matrices via   macromolecular crowding to 3D bioprinting: Fabrication of
               NaOH hydrolysis: Effects on pore size, fiber diameter, cell   3D hierarchical porous collagen-based hydrogel constructs.
               seeding and proliferation. Process Biochem, 44(9): 992–998.   Biomater Sci, 6(3): 562–574. http://doi.org/10.1039/
               http://doi.org/10.1016/j.procbio.2009.04.024       c7bm01015j
           8.   Bose S, Roy M, Bandyopadhyay A, 2012, Recent advances   19.  Pei F, Peng S, Ping W, et al., 2016, A nano-sandwich
               in bone tissue engineering scaffolds. Trends Biotechnol,   construct built with graphene nanosheets and carbon
               30(10): 546. http://doi.org/10.1016/j.tibtech.2012.07.005  nanotubes enhances mechanical properties of hydroxyapatite–
           9.   Inzana J A, Olvera D, Fuller S M, et al., 2014, 3D printing   polyetheretherketone scaffolds. Int J Nanomed, 11: 3487–
               of composite calcium phosphate and collagen scaffolds for   3500. http://doi.org/10.2147/IJN.S110920
               bone regeneration. Biomaterials, 35(13): 4026–4034. http://  20.  Shuai C, Guo W, Gao C, et al., 2017, An nMgO containing
               doi.org/10.1016/j.biomaterials.2014.01.064         scaffold: Antibacterial activity, degradation properties
           10.  Sun H, Zhu F, Hu Q, et al., 2014, Controlling stem cell-  and cell responses. Int J Bioprint, 4(1): 120. http://dx.doi.
               mediated bone regeneration through tailored mechanical   org/10.18063/IJB.v4i1.120
               properties of collagen scaffolds. Biomaterials, 35(4): 1176–  21.  Deng Y, Yang Y, Gao C, et al., 2018, Mechanism for
               1184. http://doi.org/10.1016/j.biomaterials.2013.10.054  corrosion protection of β-TCP reinforced ZK60 via laser
           11.  Zhang X, Zhang Y, Ma G, et al., 2015, The effect of   rapid solidification. Int J Bioprint, 4(1): 124. http://dx.doi.

           10                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   83   84   85   86   87   88   89   90   91   92   93