Page 88 - IJB-4-2
P. 88
A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering
The Fundamental Research Funds for the Central prefrozen process on properties of chitosan/ hydroxyapatite/
Universities of Central South University (2016zzts046). poly(methyl methacrylate) composite prepared by freeze
References drying method used for bone tissue engineering. RSC Adv,
5(97): 79679–79686. http://doi.org/10.1039/C5RA14549J
1. Tavolaro P, Catalano S, Martino G, et al., 2016, Zeolite 12. Sultana N, Wang M, 2012, PHBV/PLLA-based composite
inorganic scaffolds for novel biomedical application: Effect scaffolds fabricated using an emulsion freezing/freeze-drying
of physicochemical characteristic of zeolite membranes on technique for bone tissue engineering: surface modification
cell adhesion and viability. Appl Surf Sci, 380: 135–140. and in vitro biological evaluation. Biofabrication, 4(1):
http://doi.org/10.1016/j.apsusc.2016.01.279 015003. http://doi.org/10.1088/1758-5082/4/1/015003
2. Puppi D, Piras A M, Pirosa A, et al., 2016, Levofloxacin- 13. Soh E, Kolos E, Ruys A J, 2015, Foamed high porosity
loaded star poly(ε-caprolactone) scaffolds by additive alumina for use as a bone tissue scaffold. Ceram Int, 41(1):
manufacturing. J Mater Sci Mater Med, 27(3): 44. http://doi. 1031–1047. https://doi.org/10.1016/j.ceramint.2014.09.026
org/10.1007/s10856-015-5658-1 14. Wang C, Chen H, Zhu X, et al., 2017, An improved
3. Fradique R, Correia T R, Miguel S P, et al., 2016, Production polymeric sponge replication method for biomedical porous
of new 3D scaffolds for bone tissue regeneration by rapid titanium scaffolds. Mater Sci Eng C Mater Biol Appl, 70(Pt
prototyping. J Mater Sci Mater Med, 27(4): 1–14. http://doi. 2): 1192. http://doi.org/10.1016/j.msec.2016.03.037
org/10.1007/s10856-016-5681-x 15. Baino F, Vitale-Brovarone C, 2014, Mechanical properties
4. Gao C, Deng Y, Feng P, et al., 2014, Current progress in and reliability of glass–ceramic foam scaffolds for bone
bioactive ceramic scaffolds for bone repair and regeneration. repair. Mater Lett, 118(3): 27–30. https://doi.org/10.1016/
Int J Mol Sci, v15(3): 4714–4732. http://doi.org/10.3390/ j.matlet.2013.12.037
ijms15034714 16. Kumar A, Mandal S, Barui S, et al., 2016, Low temperature
5. Yuan H, Zhou Q, Li B, et al., 2015, Direct printing of additive manufacturing of three dimensional scaffolds for
patterned three-dimensional ultrafine fibrous scaffolds bone-tissue engineering applications: Processing related
by stable jet electrospinning for cellular ingrowth. challenges and property assessment. Mater Sci Eng R Rep,
Biofabrication, 7(4): 045004. http://doi.org/10.1088/1758- 103: 1–39. https://doi.org/10.1016/j.mser.2016.01.001
5090/7/4/045004 17. Yang Y, Wu P, Lin X, et al., 2016, System development,
6. Gao C, Peng S, Feng P, et al., 2017, Bone biomaterials and formability quality and microstructure evolution of selective
interactions with stem cells. Bone Res, 21; 5: 17059. http:// laser-melted magnesium. Virtual Phys Prototyp, 11(3): 173–
doi.org/10.1038/boneres.2017.59 181. http://doi.org/10.1080/17452759.2016.1210522
7. Ng R, Zhang X, Liu N, et al., 2009, Modifications of 18. Ng W L, Goh M H, Yeong W Y, et al., 2018, Applying
nonwoven polyethylene terephthalate fibrous matrices via macromolecular crowding to 3D bioprinting: Fabrication of
NaOH hydrolysis: Effects on pore size, fiber diameter, cell 3D hierarchical porous collagen-based hydrogel constructs.
seeding and proliferation. Process Biochem, 44(9): 992–998. Biomater Sci, 6(3): 562–574. http://doi.org/10.1039/
http://doi.org/10.1016/j.procbio.2009.04.024 c7bm01015j
8. Bose S, Roy M, Bandyopadhyay A, 2012, Recent advances 19. Pei F, Peng S, Ping W, et al., 2016, A nano-sandwich
in bone tissue engineering scaffolds. Trends Biotechnol, construct built with graphene nanosheets and carbon
30(10): 546. http://doi.org/10.1016/j.tibtech.2012.07.005 nanotubes enhances mechanical properties of hydroxyapatite–
9. Inzana J A, Olvera D, Fuller S M, et al., 2014, 3D printing polyetheretherketone scaffolds. Int J Nanomed, 11: 3487–
of composite calcium phosphate and collagen scaffolds for 3500. http://doi.org/10.2147/IJN.S110920
bone regeneration. Biomaterials, 35(13): 4026–4034. http:// 20. Shuai C, Guo W, Gao C, et al., 2017, An nMgO containing
doi.org/10.1016/j.biomaterials.2014.01.064 scaffold: Antibacterial activity, degradation properties
10. Sun H, Zhu F, Hu Q, et al., 2014, Controlling stem cell- and cell responses. Int J Bioprint, 4(1): 120. http://dx.doi.
mediated bone regeneration through tailored mechanical org/10.18063/IJB.v4i1.120
properties of collagen scaffolds. Biomaterials, 35(4): 1176– 21. Deng Y, Yang Y, Gao C, et al., 2018, Mechanism for
1184. http://doi.org/10.1016/j.biomaterials.2013.10.054 corrosion protection of β-TCP reinforced ZK60 via laser
11. Zhang X, Zhang Y, Ma G, et al., 2015, The effect of rapid solidification. Int J Bioprint, 4(1): 124. http://dx.doi.
10 International Journal of Bioprinting (2018)–Volume 4, Issue 2

