Page 89 - IJB-4-2
P. 89

Shuai C et al.

               org/10.18063/IJB.v4i1.124                          25423. http://doi.org/10.1039/C4RA16702C
           22.  Wang Z, Macosko C W, Bates F S, 2014, Tuning surface   33.  Li Y, Wang F, Yang J, et al., 2007, In vitro synthesis and
               properties of poly(butylene terephthalate) melt blown fibers   characterization of amorphous calcium phosphates with
               by alkaline hydrolysis and fluorination. ACS Appl Mater   various Ca/P atomic ratios. J Mater Sci Mater Med, 18(12):
               Interfaces, 6(14): 11640. http://doi.org/10.1021/am502398u  2303–2308. http://doi.org/10.1007/s10856-007-3132-4
           23.  Pei F, Peng S, Ping W, et al., 2016, A space network structure   34.  Park G E, Pattison M A, Park K, et al., 2005, Accelerated
               constructed by tetraneedlelike ZnO whiskers supporting   chondrocyte functions on NaOH-treated PLGA scaffolds.
               boron nitride nanosheets to enhance comprehensive pro-  Biomaterials, 26(16):3075–3082. http://doi.org/10.1016/
               perties of poly(L-lacti acid) scaffolds. Sci Rep, 6: 33385.   j.biomaterials.2004.08.005
               http://doi.org/10.1038/srep33385                35.  Gautier G, Kouassi S, Desplobain S, et al., 2012, Macro-
           24.  Cardea S, Baldino L, Pisanti P, et al., 2014, 3-D PLLA   porous silicon hydrogen diffusion layers for micro-fuel cells:
               scaffolds formation by a supercritical freeze extraction   From planar to 3D structures. Microelectron Eng, 90(2):79–
               assisted process. J Mater Sci Mater Med, 25(2): 355–362.   82. https://doi.org/10.1016/j.mee.2011.04.003
               http://doi.org/10.1007/s10856-013-5069-0        36.  Yerokhov V Y, Hezel R, Lipinski M, et al., 2002, Cost-
           25.  Peng F, Olson J R, Shaw M T, et al., 2009, Influence of   effective methods of texturing for silicon solar cells. Sol
               pretreatment on the surface characteristics of PLLA fibers   Energy Mater Sol Cells, 72(1–4):291–298. https://doi.
               and subsequent hydroxyapatite coating. J Biomed Mater Res   org/10.1016/S0927-0248(01)00177-5
               B Appl Biomater, 88(1): 220. http://doi.org/10.1002/jbm.  37.  Dinarvand P, Seyedjafari E, Shafiee A, et al., 2011,
               b.31172                                            New approach to bone tissue engineering: Simultaneous
           26.  Wang H, Qiu Z, 2012, Crystallization kinetics and mor-  application of hydroxyapatite and bioactive glass coated on
               phology of biodegradable poly(l-lactic acid)/graphene oxide   a poly(L-lactic acid) scaffold. ACS Appl Mater Interfaces,
               nanocomposites: Influences of graphene oxide loading and   3(11): 4518–4524. http://doi.org/10.1021/am201212u
               crystallization temperature. Thermochim Acta, 527(1): 40–  38.  Wang Z, Xu Y, Wang Y, et al., 2016, Enhanced in vitro
               46.                                                mineralization and in vivo osteogenesis of composite
           27.  Shuai C, Feng P, Wu P, et al., 2016, A combined nano-  scaffolds through controlled surface grafting of L-lactic acid
               structure constructed by graphene and boron nitride   oligomer on nanohydroxyapatite. Biomacromolecules, 17(3):
               nanotubes reinforces ceramic scaffolds. Chem Eng J, 313:   818–829. http://doi.org/10.1021/acs.biomac.5b01543
               487–497. https://doi.org/10.1016/j.cej.2016.11.095   39.  Liu F, Qiu W, Wang H, et al., 2013, Biomimetic deposition
           28.  Gao C, Pei F, Peng S, et al., 2017, Carbon nanotubes,   of apatite coatings on biomedical NiTi alloy coated with
               graphene and boron nitride nanotubes reinforced bioactive   amorphous titanium oxide by microarc oxidation. Mater Sci
               ceramics for bone repair. Acta Biomater, 61: 1–20. https://  Technol, 29(6): 749–753. https://doi.org/10.1179/174328471
               doi.org/10.1016/j.actbio.2017.05.020               2Y.0000000196
           29.  Shuai C, Gao C, Nie Y, et al., 2011, Structure and properties   40.  Jiao Y-P, Cui F-Z, 2007, Surface modification of polyester
               of nano-hydroxypatite scaffolds for bone tissue engineering   biomaterials for tissue engineering. Biomed Mater, 2(4):
               with a selective laser sintering system. Nanotechnology,   R24. http://doi.org/10.1088/1748-6041/2/4/R02
               22(28): 285703. http://doi.org/10.1088/0957-    41.  Wu S, Liu X, Yeung K W, et al., 2014, Biomimetic porous
               4484/22/28/285703                                  scaffolds for bone tissue engineering. Mater Sci Eng R Rep,
           30.  Wu D, Xu F, Sun B, et al., 2012, Design and preparation of   80: 1–36. https://doi.org/10.1016/j.mser.2014.04.001
               porous polymers. Chem Rev, 112(7): 3959.        42.  Xia L, Feng B, Wang P, et al., 2012, In vitro and in vivo
           31.  Johnson A J W, Herschler B A, 2011, A review of the   studies of surface-structured implants for bone formation. Int
               mechanical behavior of CaP and CaP/polymer composites for   J Nanomed, 7: 4873. http://dx.doi.org/10.2147/IJN.S29496
               applications in bone replacement and repair. Acta Biomater,   43.  An Y, Xu X, Gui K, 2016, Effect of SiC whiskers and
               7(1): 16–30. http://doi.org/10.1016/j.actbio.2010.07.012  graphene nanosheets on the mechanical properties
           32.  Shuai C, Feng P, Gao C, et al., 2015, Graphene oxide   of ZrB 2 -SiCw-Graphene ceramic composites. Ceram
               reinforced poly(vinyl alcohol): Nanocomposite scaffolds   Int, 42(12): 14066–14070. https://doi.org/10.1016/
               for tissue engineering applications. RSC Adv, 5(32): 25416–  j.ceramint.2016.06.014

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        11
   84   85   86   87   88   89   90   91   92   93   94