Page 89 - IJB-4-2
P. 89
Shuai C et al.
org/10.18063/IJB.v4i1.124 25423. http://doi.org/10.1039/C4RA16702C
22. Wang Z, Macosko C W, Bates F S, 2014, Tuning surface 33. Li Y, Wang F, Yang J, et al., 2007, In vitro synthesis and
properties of poly(butylene terephthalate) melt blown fibers characterization of amorphous calcium phosphates with
by alkaline hydrolysis and fluorination. ACS Appl Mater various Ca/P atomic ratios. J Mater Sci Mater Med, 18(12):
Interfaces, 6(14): 11640. http://doi.org/10.1021/am502398u 2303–2308. http://doi.org/10.1007/s10856-007-3132-4
23. Pei F, Peng S, Ping W, et al., 2016, A space network structure 34. Park G E, Pattison M A, Park K, et al., 2005, Accelerated
constructed by tetraneedlelike ZnO whiskers supporting chondrocyte functions on NaOH-treated PLGA scaffolds.
boron nitride nanosheets to enhance comprehensive pro- Biomaterials, 26(16):3075–3082. http://doi.org/10.1016/
perties of poly(L-lacti acid) scaffolds. Sci Rep, 6: 33385. j.biomaterials.2004.08.005
http://doi.org/10.1038/srep33385 35. Gautier G, Kouassi S, Desplobain S, et al., 2012, Macro-
24. Cardea S, Baldino L, Pisanti P, et al., 2014, 3-D PLLA porous silicon hydrogen diffusion layers for micro-fuel cells:
scaffolds formation by a supercritical freeze extraction From planar to 3D structures. Microelectron Eng, 90(2):79–
assisted process. J Mater Sci Mater Med, 25(2): 355–362. 82. https://doi.org/10.1016/j.mee.2011.04.003
http://doi.org/10.1007/s10856-013-5069-0 36. Yerokhov V Y, Hezel R, Lipinski M, et al., 2002, Cost-
25. Peng F, Olson J R, Shaw M T, et al., 2009, Influence of effective methods of texturing for silicon solar cells. Sol
pretreatment on the surface characteristics of PLLA fibers Energy Mater Sol Cells, 72(1–4):291–298. https://doi.
and subsequent hydroxyapatite coating. J Biomed Mater Res org/10.1016/S0927-0248(01)00177-5
B Appl Biomater, 88(1): 220. http://doi.org/10.1002/jbm. 37. Dinarvand P, Seyedjafari E, Shafiee A, et al., 2011,
b.31172 New approach to bone tissue engineering: Simultaneous
26. Wang H, Qiu Z, 2012, Crystallization kinetics and mor- application of hydroxyapatite and bioactive glass coated on
phology of biodegradable poly(l-lactic acid)/graphene oxide a poly(L-lactic acid) scaffold. ACS Appl Mater Interfaces,
nanocomposites: Influences of graphene oxide loading and 3(11): 4518–4524. http://doi.org/10.1021/am201212u
crystallization temperature. Thermochim Acta, 527(1): 40– 38. Wang Z, Xu Y, Wang Y, et al., 2016, Enhanced in vitro
46. mineralization and in vivo osteogenesis of composite
27. Shuai C, Feng P, Wu P, et al., 2016, A combined nano- scaffolds through controlled surface grafting of L-lactic acid
structure constructed by graphene and boron nitride oligomer on nanohydroxyapatite. Biomacromolecules, 17(3):
nanotubes reinforces ceramic scaffolds. Chem Eng J, 313: 818–829. http://doi.org/10.1021/acs.biomac.5b01543
487–497. https://doi.org/10.1016/j.cej.2016.11.095 39. Liu F, Qiu W, Wang H, et al., 2013, Biomimetic deposition
28. Gao C, Pei F, Peng S, et al., 2017, Carbon nanotubes, of apatite coatings on biomedical NiTi alloy coated with
graphene and boron nitride nanotubes reinforced bioactive amorphous titanium oxide by microarc oxidation. Mater Sci
ceramics for bone repair. Acta Biomater, 61: 1–20. https:// Technol, 29(6): 749–753. https://doi.org/10.1179/174328471
doi.org/10.1016/j.actbio.2017.05.020 2Y.0000000196
29. Shuai C, Gao C, Nie Y, et al., 2011, Structure and properties 40. Jiao Y-P, Cui F-Z, 2007, Surface modification of polyester
of nano-hydroxypatite scaffolds for bone tissue engineering biomaterials for tissue engineering. Biomed Mater, 2(4):
with a selective laser sintering system. Nanotechnology, R24. http://doi.org/10.1088/1748-6041/2/4/R02
22(28): 285703. http://doi.org/10.1088/0957- 41. Wu S, Liu X, Yeung K W, et al., 2014, Biomimetic porous
4484/22/28/285703 scaffolds for bone tissue engineering. Mater Sci Eng R Rep,
30. Wu D, Xu F, Sun B, et al., 2012, Design and preparation of 80: 1–36. https://doi.org/10.1016/j.mser.2014.04.001
porous polymers. Chem Rev, 112(7): 3959. 42. Xia L, Feng B, Wang P, et al., 2012, In vitro and in vivo
31. Johnson A J W, Herschler B A, 2011, A review of the studies of surface-structured implants for bone formation. Int
mechanical behavior of CaP and CaP/polymer composites for J Nanomed, 7: 4873. http://dx.doi.org/10.2147/IJN.S29496
applications in bone replacement and repair. Acta Biomater, 43. An Y, Xu X, Gui K, 2016, Effect of SiC whiskers and
7(1): 16–30. http://doi.org/10.1016/j.actbio.2010.07.012 graphene nanosheets on the mechanical properties
32. Shuai C, Feng P, Gao C, et al., 2015, Graphene oxide of ZrB 2 -SiCw-Graphene ceramic composites. Ceram
reinforced poly(vinyl alcohol): Nanocomposite scaffolds Int, 42(12): 14066–14070. https://doi.org/10.1016/
for tissue engineering applications. RSC Adv, 5(32): 25416– j.ceramint.2016.06.014
International Journal of Bioprinting (2018)–Volume 4, Issue 2 11

