Page 125 - IJB-10-4
P. 125
International Journal of Bioprinting Bioprinting hearing loss treatment
20. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based 32. Romano JJ, Iliff NT, Manson PN. Use of Medpor porous
bio-ink improves cell viability and homogeneity during drop- polyethylene implants in 140 patients with facial fractures.
on-demand printing. Materials (Basel). 2017;10(2):190. J Craniofac Surg. 1993;4(3):142-147.
doi: 10.3390/ma10020190 doi: 10.1097/00001665-199307000-00007
21. Ng WL, Huang X, Shkolnikov V, et al. Polyvinylpyrrolidone- 33. Ma Y, Lloyd MS. Systematic review of Medpor versus
based bioink: influence of bioink properties on printing autologous ear reconstruction. J Craniofac Surg.
performance and cell proliferation during inkjet-based 2022;33(2):602-606.
bioprinting. Bio-des Manuf. 2023;6(2):676-690. doi: 10.1097/SCS.0000000000008130
doi: 10.1007/s42242-023-00245-3
34. Zielinska D, Fisch P, Moehrlen U, et al. Combining
22. Zhuang P, Ng WL, An J, Chua CK, Tan LP. Layer-by-layer bioengineered human skin with bioprinted cartilage for ear
ultraviolet assisted extrusion-based (UAE) bioprinting of reconstruction. Sci Adv. 2023;9(40):eadh1890.
hydrogel constructs with high aspect ratio for soft tissue doi: 10.1126/sciadv.adh1890
engineering applications. PLoS One. 2019;14:e0216776. 35. Wang X, Neu CP, Pierce DM. Advances toward multiscale
doi: 10.1371/journal.pone.0216776
computational models of cartilage mechanics and
23. Ng WL, Goh MH, Yeong WY, Naing MW. Applying mechanobiology. Curr Opin Biomed Eng. 2019;11:51-57.
macromolecular crowding to 3D bioprinting: fabrication of 36. Xie, X, Wu S, Mou S, et al. Microtissue-based bioink as a
3D hierarchical porous collagen-based hydrogel constructs. chondrocyte microshelter for DLP bioprinting. Adv Healthc
Biomater Sci. 2018;6:562-574. Mater. 2022;11(22):e2201877.
doi: 10.1039/c7bm01015j
doi: 10.1002/adhm.202201877
24. Fedorovich NE, Haverslag RT, Dhert WJ, Alblas J. The role 37. Hirano N, Kusuhara H, Sueyoshi Y, et al. Ethanol treatment
of endothelial progenitor cells in prevascularized bone tissue of nanoPGA/PCL composite scaffolds enhances human
engineering: development of heterogeneous constructs. chondrocyte development in the cellular microenvironment
Tissue Eng Part A. 2010;16(7):2355-2367. of tissue-engineered auricle constructs. PLoS One.
doi: 10.1089/ten.TEA.2009.0603
2021;16(7):e0253149.
25. Mao, Q, Wang Y, Li Y, et al. Fabrication of liver microtissue doi: 10.1371/journal.pone.0253149
with liver decellularized extracellular matrix (dECM) bioink 38. He A, Xia H, Xiao K, et al. Cell yield, chondrogenic potential,
by digital light processing (DLP) bioprinting. Mater Sci Eng and regenerated cartilage type of chondrocytes derived from
C Mater Biol Appl. 2020; 109:110625. ear, nasoseptal, and costal cartilage. J Tissue Eng Regen Med.
doi: 10.1016/j.msec.2020.110625
2018;12(4):1123-1132.
26. Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise doi: 10.1002/term.2613
review: bioprinting of stem cells for transplantable tissue 39. Cao T, Chang S, Wang Y, Wang B, Zhang Q. Review
fabrication. Stem Cells Transl Med. 2017;6(10):1940-1948. of 602 microtia reconstructions: revisions and specific
doi: 10.1002/sctm.17-0148
recommendations for each subtype. Plast Reconstr Surg.
27. Sekar MP, Budharaju H, Zennifer A, et al. Current standards 2021;148(2):307e-308e.
and ethical landscape of engineered tissues-3D bioprinting doi: 10.1097/PRS.0000000000008399
perspective. J Tissue Eng. 2021;12:20417314211027677. 40. Wersenyi G, Scheper V, Spagnol S, Eixelberger T, Wittenberg
doi: 10.1177/20417314211027677
T. Cost-effective 3D scanning and printing technologies for
28. Tashman JW, Shiwarski DJ, Feinberg AW. Development of outer ear reconstruction: current status. Head Face Med.
a high-performance open-source 3D bioprinter. Sci Rep. 2023;19:46.
2022;12:22652. doi: 10.1186/s13005-023-00394-x
doi: 10.1038/s41598-022-26809-4
41. Lee JS, Hong JM, Jung JW, et al. 3D printing of composite
29. Jeon B, Lee C, Kim M, Choi TH, Kim S, Kim S. Fabrication tissue with complex shape applied to ear regeneration.
of three-dimensional scan-to-print ear model for microtia Biofabrication. 2014;6(2):024103.
reconstruction. J Surg Res. 2016;206:490-497. doi: 10.1088/1758-5082/6/2/024103
doi: 10.1016/j.jss.2016.08.004
42. Zhou G, Jiang H, Yin Z, et al. In vitro regeneration of patient-
30. Joo OY, Kim TH, Kim YS, et al. Fabrication of 3D-printed specific ear-shaped cartilage and its first clinical application
implant for two-stage ear reconstruction surgery and its for auricular reconstruction. EBioMedicine. 2018;28:
clinical application. Yonsei Med J. 2023;64:291-296. 287-302.
doi: 10.3349/ymj.2022.0547 doi: 10.1016/j.ebiom.2018.01.011
31. Andrews J, Kopacz AA, Hohman MH. Ear microtia. In: 43 Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears.
StatPearls [Internet]. Treasure Island (FL): StatPearls Nano Lett. 2013;13(6):2634-2639.
Publishing; 2024. doi: 10.1021/nl4007744
Volume 10 Issue 4 (2024) 117 doi: 10.36922/ijb.3497

