Page 129 - IJB-10-4
P. 129

International Journal of Bioprinting                                     Bioprinting hearing loss treatment




            117.  Chen S, Wang H, Liu D, et al. Early osteoimmunomodulation      doi: 10.15283/ijsc23146
               by mucin hydrogels augments the healing and     129. Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC.
               revascularization of rat critical-size calvarial bone defects.   Reconstructing the heart using iPSCs: engineering strategies
               Bioact Mater. 2023;25:176-188.                     and applications. J Mol Cell Cardiol. 2021;157:56-65.
               doi: 10.1016/j.bioactmat.2023.01.022
                                                                  doi: 10.1016/j.yjmcc.2021.04.006
            118.  Maruyama M, Rhee C, Utsunomiya T,  et al. Modulation   130. Gu  Q,  Tomaskovic-Crook  E,  Wallace  GG,  Crook  JM.  3D
               of the inflammatory response and bone healing.  Front   bioprinting human induced pluripotent stem cell constructs
               Endocrinol (Lausanne). 2020;11:386.                for in situ cell proliferation and successive multilineage
               doi: 10.3389/fendo.2020.00386
                                                                  differentiation. Adv Healthc Mater. 2017;6(17):1700175.
            119. Rahmati M, Stötzel S, Khassawna TE, et al. Early      doi: 10.1002/adhm.201700175
               osteoimmunomodulatory effects of magnesium-calcium-  131. Sullivan MA, Sullivan MA, Lane S, Volkerling A, et al. Three-
               zinc alloys. J Tissue Eng. 2021;12:20417314211047100.  dimensional bioprinting of stem cell-derived central nervous
               doi: 10.1177/20417314211047100
                                                                  system cells enables astrocyte growth, vasculogenesis, and
            120  Wang M, Yu Y, Dai K, et al. Improved osteogenesis and   enhances neural differentiation/function. Biotechnol Bioeng.
               angiogenesis  of  magnesium-doped calcium  phosphate   2023;120(10):3079-3091.
               cement via macrophage immunomodulation. Biomater Sci.      doi: 10.1002/bit.28470
               2016;4(11):1574-1583.                           132. Prominski A, Li P, Miao BA, Tian B. Nanoenabled
               doi: 10.1039/c6bm00290k
                                                                  bioelectrical modulation.  Acc Mater Res. 2021;2(10):
            121. Zhou Y, Liao S, Chu Y, et al. An injectable bioink with rapid   895-906.
               prototyping in the air and in-situmild polymerization for 3D      doi: 10.1021/accountsmr.1c00132
               bioprinting. Biofabrication. 2021;13(4).        133. Pesantez Torres F, Tokranova N, Amodeo E, et al. Interfacing
               doi: 10.1088/1758-5090/ac23e4
                                                                  neural cells with typical microelectronics materials for future
            122. Park TY, Yang YJ, Ha DH, Cho DW, Cha HJ. Marine-derived   manufacturing. Biosens Bioelectron. 2023;242: 115749.
               natural polymer-based bioprinting ink for biocompatible,      doi: 10.1016/j.bios.2023.115749
               durable, and controllable  3D constructs.  Biofabrication.   134. Du X, Wei D, Huang L, Zhu M, Zhang Y, Zhu Y. 3D printing
               2019;11:035001.                                    of mesoporous bioactive glass/silk fibroin composite
               doi: 10.1088/1758-5090/ab0c6f
                                                                  scaffolds for bone tissue engineering. Mater Sci Eng C Mater
            123. Sun Y, Yu K, Nie J,  et al. Modeling the printability of   Biol Appl. 2019:103;109731.
               photocuring and strength adjustable hydrogel bioink during      doi: 10.1016/j.msec.2019.05.016
               projection-based 3D bioprinting. Biofabrication. 2021;13(3).  135. Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed
               doi: 10.1088/1758-5090/aba413
                                                                  scaffolds based on hyaluronic acid bioinks for  tissue
            124.  Singh YP, Bandyopadhyay A,  Mandal BB. 3D bioprinting   engineering: a review. Biomater Res. 2023;27(1):137.
               using cross-linker-free silk-gelatin bioink for cartilage tissue      doi: 10.1186/s40824-023-00460-0
               engineering. ACS Appl Mater Interfaces. 2019:11:33684-33696.  136. Miri AK, Mostafavi E, Khorsandi D, Hu SK, Malpica M,
               doi: 10.1021/acsami.9b11644
                                                                  Khademhosseini A. Bioprinters for organs-on-chips.
            125. Lee M, Bae K, Levinson C, Zenobi-Wong M. Nanocomposite   Biofabrication. 2019;11(4):042002.
               bioink exploits dynamic covalent bonds between      doi: 10.1088/1758-5090/ab2798
               nanoparticles and polysaccharides for precision bioprinting.   137. Bosmans C, Ginés Rodriguez N, Karperien M, et al.
               Biofabrication. 2020;12: 025025.                   Towards single-cell bioprinting: micropatterning tools for
               doi: 10.1088/1758-5090/ab782d
                                                                  organ-on-chip development. Trends Biotechnol. 2024;42(6):
            126. Wei Y, Li L, Xie C, et al. Current status of auricular   739-759.
               reconstruction strategy development. J Craniofac Surg. 2023;      doi: 10.1016/j.tibtech.2023.11.014
               10-1097.                                        138. Vera D, García-Díaz M, Torras N, et al. A 3D bioprinted
               doi: 10.1097/SCS.0000000000009908.
                                                                  hydrogel gut-on-chip with integrated electrodes for
            127. Ikeda AK, Bhrany AD, Sie KCY, Bly RA. Management of   transepithelial electrical resistance (TEER) measurements.
               patients with unilateral microtia and aural atresia: recent   Biofabrication. 2024;16(3):035008.
               advances and updates.  Curr Opin Otolaryngol Head Neck      doi: 10.1088/1758-5090/ad3aa4
               Surg. 2021;29(6):526-533.                       139. Tolabi H, Davari N, Khajehmohammadi M, et al. Progress
               doi: 10.1097/MOO.0000000000000758
                                                                  of microfluidic hydrogel-based scaffolds and organ-on-
            128. Kim B, Kim J, Lee S. Unleashing the power of undifferentiated   chips for the cartilage tissue engineering.  Adv Mater.
               induced pluripotent stem cell bioprinting: current progress   2023;35:e2208852.
               and future prospects. Int J Stem Cells. 2024;17(1):38-50.     doi: 10.1002/adma.202208852



            Volume 10 Issue 4 (2024)                       121                                doi: 10.36922/ijb.3497
   124   125   126   127   128   129   130   131   132   133   134