Page 129 - IJB-10-4
P. 129
International Journal of Bioprinting Bioprinting hearing loss treatment
117. Chen S, Wang H, Liu D, et al. Early osteoimmunomodulation doi: 10.15283/ijsc23146
by mucin hydrogels augments the healing and 129. Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC.
revascularization of rat critical-size calvarial bone defects. Reconstructing the heart using iPSCs: engineering strategies
Bioact Mater. 2023;25:176-188. and applications. J Mol Cell Cardiol. 2021;157:56-65.
doi: 10.1016/j.bioactmat.2023.01.022
doi: 10.1016/j.yjmcc.2021.04.006
118. Maruyama M, Rhee C, Utsunomiya T, et al. Modulation 130. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM. 3D
of the inflammatory response and bone healing. Front bioprinting human induced pluripotent stem cell constructs
Endocrinol (Lausanne). 2020;11:386. for in situ cell proliferation and successive multilineage
doi: 10.3389/fendo.2020.00386
differentiation. Adv Healthc Mater. 2017;6(17):1700175.
119. Rahmati M, Stötzel S, Khassawna TE, et al. Early doi: 10.1002/adhm.201700175
osteoimmunomodulatory effects of magnesium-calcium- 131. Sullivan MA, Sullivan MA, Lane S, Volkerling A, et al. Three-
zinc alloys. J Tissue Eng. 2021;12:20417314211047100. dimensional bioprinting of stem cell-derived central nervous
doi: 10.1177/20417314211047100
system cells enables astrocyte growth, vasculogenesis, and
120 Wang M, Yu Y, Dai K, et al. Improved osteogenesis and enhances neural differentiation/function. Biotechnol Bioeng.
angiogenesis of magnesium-doped calcium phosphate 2023;120(10):3079-3091.
cement via macrophage immunomodulation. Biomater Sci. doi: 10.1002/bit.28470
2016;4(11):1574-1583. 132. Prominski A, Li P, Miao BA, Tian B. Nanoenabled
doi: 10.1039/c6bm00290k
bioelectrical modulation. Acc Mater Res. 2021;2(10):
121. Zhou Y, Liao S, Chu Y, et al. An injectable bioink with rapid 895-906.
prototyping in the air and in-situmild polymerization for 3D doi: 10.1021/accountsmr.1c00132
bioprinting. Biofabrication. 2021;13(4). 133. Pesantez Torres F, Tokranova N, Amodeo E, et al. Interfacing
doi: 10.1088/1758-5090/ac23e4
neural cells with typical microelectronics materials for future
122. Park TY, Yang YJ, Ha DH, Cho DW, Cha HJ. Marine-derived manufacturing. Biosens Bioelectron. 2023;242: 115749.
natural polymer-based bioprinting ink for biocompatible, doi: 10.1016/j.bios.2023.115749
durable, and controllable 3D constructs. Biofabrication. 134. Du X, Wei D, Huang L, Zhu M, Zhang Y, Zhu Y. 3D printing
2019;11:035001. of mesoporous bioactive glass/silk fibroin composite
doi: 10.1088/1758-5090/ab0c6f
scaffolds for bone tissue engineering. Mater Sci Eng C Mater
123. Sun Y, Yu K, Nie J, et al. Modeling the printability of Biol Appl. 2019:103;109731.
photocuring and strength adjustable hydrogel bioink during doi: 10.1016/j.msec.2019.05.016
projection-based 3D bioprinting. Biofabrication. 2021;13(3). 135. Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed
doi: 10.1088/1758-5090/aba413
scaffolds based on hyaluronic acid bioinks for tissue
124. Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting engineering: a review. Biomater Res. 2023;27(1):137.
using cross-linker-free silk-gelatin bioink for cartilage tissue doi: 10.1186/s40824-023-00460-0
engineering. ACS Appl Mater Interfaces. 2019:11:33684-33696. 136. Miri AK, Mostafavi E, Khorsandi D, Hu SK, Malpica M,
doi: 10.1021/acsami.9b11644
Khademhosseini A. Bioprinters for organs-on-chips.
125. Lee M, Bae K, Levinson C, Zenobi-Wong M. Nanocomposite Biofabrication. 2019;11(4):042002.
bioink exploits dynamic covalent bonds between doi: 10.1088/1758-5090/ab2798
nanoparticles and polysaccharides for precision bioprinting. 137. Bosmans C, Ginés Rodriguez N, Karperien M, et al.
Biofabrication. 2020;12: 025025. Towards single-cell bioprinting: micropatterning tools for
doi: 10.1088/1758-5090/ab782d
organ-on-chip development. Trends Biotechnol. 2024;42(6):
126. Wei Y, Li L, Xie C, et al. Current status of auricular 739-759.
reconstruction strategy development. J Craniofac Surg. 2023; doi: 10.1016/j.tibtech.2023.11.014
10-1097. 138. Vera D, García-Díaz M, Torras N, et al. A 3D bioprinted
doi: 10.1097/SCS.0000000000009908.
hydrogel gut-on-chip with integrated electrodes for
127. Ikeda AK, Bhrany AD, Sie KCY, Bly RA. Management of transepithelial electrical resistance (TEER) measurements.
patients with unilateral microtia and aural atresia: recent Biofabrication. 2024;16(3):035008.
advances and updates. Curr Opin Otolaryngol Head Neck doi: 10.1088/1758-5090/ad3aa4
Surg. 2021;29(6):526-533. 139. Tolabi H, Davari N, Khajehmohammadi M, et al. Progress
doi: 10.1097/MOO.0000000000000758
of microfluidic hydrogel-based scaffolds and organ-on-
128. Kim B, Kim J, Lee S. Unleashing the power of undifferentiated chips for the cartilage tissue engineering. Adv Mater.
induced pluripotent stem cell bioprinting: current progress 2023;35:e2208852.
and future prospects. Int J Stem Cells. 2024;17(1):38-50. doi: 10.1002/adma.202208852
Volume 10 Issue 4 (2024) 121 doi: 10.36922/ijb.3497

