Page 228 - IJB-10-4
P. 228

International Journal of Bioprinting                             3D-Printed scaffolds for diabetic bone defects




               roles of increased bone marrow adiposity. Front Endocrinol.   20.  Wu J, Zhang M, Hao S, et al. Mitochondria-targeted
               2022;13.                                           peptide reverses mitochondrial dysfunction and cognitive
               doi: 10.3389/fendo.2022.981487                     deficits in sepsis-associated encephalopathy. Mol Neurobiol.
                                                                  2014;52(1):783-791.
            8.   Khosla S, Samakkarnthai P, Monroe DG, Farr JN. Update on      doi: 10.1007/s12035-014-8918-z
               the pathogenesis and treatment of skeletal fragility in type 2
               diabetes mellitus. Nat Rev Endocrinol. 2021;17(11):685-697.  21.  Escribano-Lopez I, Diaz-Morales N, Iannantuoni F, et
               doi: 10.1038/s41574-021-00555-5                    al. The mitochondrial antioxidant SS-31 increases SIRT1
                                                                  levels and ameliorates inflammation, oxidative stress and
            9.   Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT.   leukocyte-endothelium interactions in type 2 diabetes. Sci
               Critical-size bone defects: is there a consensus for diagnosis   Rep. 2018;8(1).
               and treatment? J Orthop Trauma. 2018;32(3):S7-S11.  doi: 10.1038/s41598-018-34251-8
               doi: 10.1097/BOT.0000000000001115
                                                               22.  Li Q, Xing D, Ma L, Gao C. Synthesis of E7 peptide-modified
            10.  Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized   biodegradable  polyester  with  the  improving  affinity  to
               additive manufacturing in bone scaffolds—the gateway to   mesenchymal stem cells. Mater Sci Eng C. 2017;73:562-568.
               precise bone defect treatment. Research. 2023;6.     doi: 10.1016/j.msec.2016.12.088
               doi: 10.34133/research.0239
                                                               23.  Chen Z, Lv Z, Zhuang Y, et al. Mechanical signal‐tailored
            11.  Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey   hydrogel microspheres recruit and train stem cells for
               of respirasome. Protein Cell. 2020;11(5):318-338.  precise differentiation. Adv Mater. 2023;35(40).
               doi: 10.1007/s13238-019-00681-x                    doi: 10.1002/adma.202300180
            12.  Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed   24.  Dell RB, Holleran S, Ramakrishnan R. Sample size
               scaffolds for promoting bone regeneration.  Biomaterials.   determination. ILAR J. 2002;43(4):207-213.
               2019;190-191:97-110.                               doi: 10.1093/ilar.43.4.207
               doi: 10.1016/j.biomaterials.2018.10.033
                                                               25.  Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes
            13.  Zheng D, Chen W, Ruan H, et al. Metformin-hydrogel   complications. Nat Rev Nephrol. 2020;16(7):377-390.
               with glucose responsiveness for chronic inflammatory      doi: 10.1038/s41581-020-0278-5
               suppression. Chem Eng J. 2022;428.
               doi: 10.1016/j.cej.2021.131064                  26.  Krako Jakovljevic N, Pavlovic K, Jotic A, et al. Targeting
                                                                  mitochondria in diabetes. Int J Mol Sci. 2021;22(12).
            14.  Chen H, Jia P, Kang H, et al. Upregulating Hif‐1α by   doi: 10.3390/ijms22126642
               hydrogel nanofibrous scaffolds for rapidly recruiting   27.  Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-
               angiogenesis relative cells in diabetic wound. Adv Healthc   Mijares A, Rocha M, Victor VM. Mitochondrial dynamics
               Mater. 2016;5(8):907-918.                          in type 2 diabetes: pathophysiological implications. Redox
               doi: 10.1002/adhm.201501018                        Biol. 2017;11:637-645.
            15.  Chen  W, Zheng D,  Chen Y,  et al. Electrospun  fibers      doi: 10.1016/j.redox.2017.01.013
               improving cellular respiration via mitochondrial protection.   28.  Mohammadalipour A, Dumbali SP, Wenzel PL.
               Small. 2021;17(46).                                Mitochondrial transfer and regulators of mesenchymal
               doi: 10.1002/smll.202104012                        stromal cell function and therapeutic efficacy. Front Cell Dev
            16.  Brachet A, Bełżek A, Furtak D, et al. Application of 3D   Biol. 2020;8.
               printing in bone grafts. Cells. 2023;12(6).        doi: 10.3389/fcell.2020.603292
               doi: 10.3390/cells12060859                      29.  Rathinavelu S, Guidry-Elizondo C, Banu J. Molecular
            17.  Murphy SV, De Coppi P, Atala A. Opportunities and   modulation of osteoblasts and osteoclasts in Type 2 diabetes.
               challenges of translational 3D bioprinting. Nat Biomed Eng.   J Diabetes Res. 2018;2018:1-11.
               2019;4(4):370-380.                                 doi: 10.1155/2018/6354787
               doi: 10.1038/s41551-019-0471-7                  30.  Hu Z, Ma C, Liang Y, Zou S, Liu X. Osteoclasts in bone
            18.  Miszuk JM,  Xu T, Yao Q, et al. Functionalization of PCL-  regeneration under type 2 diabetes mellitus. Acta Biomater.
               3D electrospun nanofibrous scaffolds for improved BMP2-  2019;84:402-413.
               induced bone formation.  Appl Mater Today.  2018;10:      doi: 10.1016/j.actbio.2018.11.052
               194-202.                                        31.  Zhou B, Zhang J-Y, Liu X-S, et al. Tom20 senses iron-
               doi: 10.1016/j.apmt.2017.12.004                    activated ROS  signaling  to  promote  melanoma  cell
            19.  Szeto  HH. Mitochondria-targeted cytoprotective  peptides   pyroptosis. Cell Res. 2018;28(12):1171-1185.
               for ischemia–reperfusion  injury.  Antioxid Redox Signal.   doi: 10.1038/s41422-018-0090-y
               2008;10(3):601-620.                             32.  Zhang Z, Nam HK, Crouch S, Hatch NE. Tissue nonspecific
               doi: 10.1089/ars.2007.1892                         alkaline phosphatase function in bone and muscle


            Volume 10 Issue 4 (2024)                       220                                doi: 10.36922/ijb.2379
   223   224   225   226   227   228   229   230   231   232   233